Space groups and groups of prime-power order II

1980 ◽  
Vol 35 (1) ◽  
pp. 203-209 ◽  
Author(s):  
H. Finken ◽  
J. Neub�ser ◽  
W. Plesken
1981 ◽  
Vol s2-24 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Waltraud Felsch ◽  
Joachim Neubüser ◽  
Wilhelm Plesken

1980 ◽  
Vol 35 (1) ◽  
pp. 193-202 ◽  
Author(s):  
C. R. Leedham-Green ◽  
M. F. Newman

2011 ◽  
Vol 5 (1) ◽  
pp. 22-36 ◽  
Author(s):  
J.W. Sander ◽  
T. Sander

The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs. Such a graph can be characterized by its vertex count n and a set D of divisors of n such that its vertex set is Zn and its edge set is {{a,b} : a, b ? Zn; gcd(a-b, n)? D}. For an integral circulant graph on ps vertices, where p is a prime, we derive a closed formula for its energy in terms of n and D. Moreover, we study minimal and maximal energies for fixed ps and varying divisor sets D.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


2015 ◽  
Vol 423 ◽  
pp. 950-962 ◽  
Author(s):  
Guohua Qian ◽  
Feng Tang

Author(s):  
Thomas J. Laffey ◽  
Desmond MacHale

AbstractLet G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.


Sign in / Sign up

Export Citation Format

Share Document