circulant graphs
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 75)

H-INDEX

22
(FIVE YEARS 2)

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Laxman Saha ◽  
Rupen Lama ◽  
Kalishankar Tiwary ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a connected graph with vertex set V(G) and d(u,v) be the distance between the vertices u and v. A set of vertices S={s1,s2,…,sk}⊂V(G) is called a resolving set for G if, for any two distinct vertices u,v∈V(G), there is a vertex si∈S such that d(u,si)≠d(v,si). A resolving set S for G is fault-tolerant if S\{x} is also a resolving set, for each x in S, and the fault-tolerant metric dimension of G, denoted by β′(G), is the minimum cardinality of such a set. The paper of Basak et al. on fault-tolerant metric dimension of circulant graphs Cn(1,2,3) has determined the exact value of β′(Cn(1,2,3)). In this article, we extend the results of Basak et al. to the graph Cn(1,2,3,4) and obtain the exact value of β′(Cn(1,2,3,4)) for all n≥22.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ademir Hujdurović ◽  
Đorđe Mitrović ◽  
Dave Witte Morris

A graph $X$ is said to be unstable if the direct product $X \times K_2$ (also called the canonical double cover of $X$) has automorphisms that do not come from automorphisms of its factors $X$ and $K_2$. It is nontrivially unstable if it is unstable, connected, and nonbipartite, and no two distinct vertices of $X$ have exactly the same neighbors. We find three new conditions that each imply a circulant graph is unstable. (These yield infinite families of nontrivially unstable circulant graphs that were not previously known.) We also find all of the nontrivially unstable circulant graphs of order $2p$, where $p$ is any prime number. Our results imply that there does not exist a nontrivially unstable circulant graph of order $n$ if and only if either $n$ is odd, or $n < 8$, or $n = 2p$, for some prime number $p$ that is congruent to $3$ modulo $4$.


2021 ◽  
Vol 344 (11) ◽  
pp. 112557
Author(s):  
Štefko Miklavič ◽  
Primož Šparl
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shu Jiao Song ◽  
Weiqian Zhang ◽  
Can Xu

Identifying and locating-dominating codes have been studied widely in circulant graphs. Recently, Ville Junnila et al. (Optimal bounds on codes for location in circulant graphs, Cryptography and Communications; 2019) studied identifying and locating-dominating codes in circulants C n 1 , d , C n 1 , d − 1 , d , and C n 1 , d − 1 , d , d + 1 . In this paper, identifying, locating, and self-identifying codes in the circulant graphs C n k , d , C n k , d − k , d , and C n k , d − k , d , d + k are studied, and this extends Junnila et al.’s results to general cases.


Author(s):  
Soumalya Joardar ◽  
Arnab Mandal

Abstract We study the invariance of KMS states on graph $C^{\ast }$ -algebras coming from strongly connected and circulant graphs under the classical and quantum symmetry of the graphs. We show that the unique KMS state for strongly connected graphs is invariant under the quantum automorphism group of the graph. For circulant graphs, it is shown that the action of classical and quantum automorphism groups preserves only one of the KMS states occurring at the critical inverse temperature. We also give an example of a graph $C^{\ast }$ -algebra having more than one KMS state such that all of them are invariant under the action of classical automorphism group of the graph, but there is a unique KMS state which is invariant under the action of quantum automorphism group of the graph.


2021 ◽  
Vol 33 (5) ◽  
pp. 66-73
Author(s):  
B. CHALUVARAJU ◽  
◽  
M. KUMARA ◽  

The packing chromatic number χ_{p}(G) of a graph G = (V,E) is the smallest integer k such that the vertex set V(G) can be partitioned into disjoint classes V1 ,V2 ,...,Vk , where vertices in Vi have pairwise distance greater than i. In this paper, we compute the packing chromatic number of circulant graphs with different jump sizes._{}


Author(s):  
R. Stalin Mary ◽  
N. Parthiban ◽  
Indra Rajasingh ◽  
Paul Manuel

10.37236/9764 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
J. W. Sander

By a suitable representation in the Euclidean plane, each circulant graph $G$, i.e. a graph with a circulant adjacency matrix ${\mathcal A}(G)$, reveals its rotational symmetry and, as the drawing's most notable feature, a central hole, the so-called \emph{geometric kernel} of $G$. Every integral circulant graph $G$ on $n$ vertices, i.e. satisfying the additional property that all of the eigenvalues of ${\mathcal A}(G)$ are integral, is isomorphic to some graph $\mathrm{ICG}(n,\mathcal{D})$ having vertex set $\mathbb{Z}/n\mathbb{Z}$ and edge set $\{\{a,b\}:\, a,b\in\mathbb{Z}/n\mathbb{Z} ,\, \gcd(a-b,n)\in \mathcal{D}\}$ for a uniquely determined set $\mathcal{D}$ of positive divisors of $n$. A lot of recent research has revolved around the interrelation between graph-theoretical, algebraic and arithmetic properties of such graphs. In this article we examine arithmetic implications imposed on $n$ by a geometric feature, namely the size of the geometric kernel of $\mathrm{ICG}(n,\mathcal{D})$.


Sign in / Sign up

Export Citation Format

Share Document