The multidimensional Jackson theorem in Lp

1992 ◽  
Vol 52 (1) ◽  
pp. 709-716 ◽  
Author(s):  
N. N. Pustovoitov

1976 ◽  
Vol 20 (3) ◽  
pp. 801-804 ◽  
Author(s):  
V. A. Yudin


1981 ◽  
Vol 29 (2) ◽  
pp. 158-162 ◽  
Author(s):  
V. A. Yudin


1991 ◽  
Vol 49 (5) ◽  
pp. 552-553
Author(s):  
N. N. Pustovoitov




1973 ◽  
Vol 9 (1) ◽  
pp. 91-95 ◽  
Author(s):  
D.J Newman
Keyword(s):  




2015 ◽  
Vol 205 (2) ◽  
pp. 240-246
Author(s):  
V. V. Zhuk ◽  
V. M. Bure
Keyword(s):  


2013 ◽  
Vol 21 ◽  
pp. 3
Author(s):  
T.A. Agoshkova

In the space $L_{\psi}[-1;1]$ of non-periodic functions with metric $\rho(f,0)_{\psi} = \int\limits_{-1}^1 \psi(|f(x)|)dx$, where $\psi$ is a function of the type of modulus of continuity, we study Jackson inequality for modulus of continuity of $k$-th order in the case of approximation by algebraic polynomials. It is proved that the direct Jackson theorem is true if and only if the lower dilation index of the function $\psi$ is not equal to zero.



1993 ◽  
Vol 53 (4) ◽  
pp. 430-442
Author(s):  
O. I. Smirnov
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document