The law of the iterated logarithm and Marcinkiewicz law of large numbers forB-valuedU-statistics

1996 ◽  
Vol 9 (3) ◽  
pp. 679-701 ◽  
Author(s):  
Zhonggen Su
1992 ◽  
Vol 45 (3) ◽  
pp. 479-482 ◽  
Author(s):  
Tien-Chung Hu ◽  
N.C. Weber

For sequences of independent and identically distributed random variables it is well known that the existence of the second moment implies the law of the iterated logarithm. We show that the law of the iterated logarithm does not extend to arrays of independent and identically distributed random variables and we develop an analogous rate result for such arrays under finite fourth moments.


1983 ◽  
Vol 35 (6) ◽  
pp. 1129-1146 ◽  
Author(s):  
G. L. O'Brien

Let {Yn, n ∊ Z} be an ergodic strictly stationary sequence of random variables with mean zero, where Z denotes the set of integers. For n ∊ N = {1, 2, …}, let Sn = Y1 + Y2 + … + Yn. The ergodic theorem, alias the strong law of large numbers, says that n–lSn → 0 as n → ∞ a.s. If the Yn's are independent and have variance one, the law of the iterated logarithm tells us that this convergence takes place at the rate in the sense that1It is our purpose here to investigate what other rates of convergence are possible for the ergodic theorem, that is to say, what sequences {bn, n ≧ 1} have the property that2for some ergodic stationary sequence {Yn, n ∊ Z}.


Sign in / Sign up

Export Citation Format

Share Document