Behavior of solutions of quasilinear elliptic inequalities containing terms with lower-order derivatives

1998 ◽  
Vol 64 (6) ◽  
pp. 817-821
Author(s):  
A. A. Kon'kov



2019 ◽  
Vol 179 ◽  
pp. 105-130 ◽  
Author(s):  
José Carmona ◽  
Tommaso Leonori ◽  
Salvador López-Martínez ◽  
Pedro J. Martínez-Aparicio






Author(s):  
Marius Ghergu ◽  
Paschalis Karageorgis ◽  
Gurpreet Singh

We study the quasilinear elliptic inequality \[ -\Delta_m u - \frac{\mu}{|x|^m}u^{m-1} \geq (I_\alpha*u^p)u^q \quad\mbox{in }\mathbb{R}^N\setminus \overline B_1, N\geq 1, \] where $p>0$ , $q, \mu \in \mathbb {R}$ , $m>1$ and $I_\alpha$ is the Riesz potential of order $\alpha \in (0,N)$ . We obtain necessary and sufficient conditions for the existence of positive solutions.



2007 ◽  
Vol 87 (6) ◽  
pp. 582-600 ◽  
Author(s):  
Paolo Antonini ◽  
Dimitri Mugnai ◽  
Patrizia Pucci


Sign in / Sign up

Export Citation Format

Share Document