quasilinear elliptic problems
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 24)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Juan C. Ortiz Chata ◽  
Marcos T. O. Pimenta ◽  
Sergio Segura de León

AbstractIn this work we prove the existence of nontrivial bounded variation solutions to quasilinear elliptic problems involving a weighted 1-Laplacian operator. A key feature of these problems is that weights are unbounded. One of our main tools is the well-known Caffarelli-Kohn-Nirenberg’s inequality, which is established in the framework of weighted spaces of functions of bounded variation (and that provides us the necessary embeddings between weighted spaces). Additional tools are suitable variants of the Mountain Pass Theorem as well as an extension of the pairing theory by Anzellotti to this new setting.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Marino Badiale ◽  
Michela Guida ◽  
Sergio Rolando

<p style='text-indent:20px;'>In this paper we continue the work that we began in [<xref ref-type="bibr" rid="b6">6</xref>]. Given <inline-formula><tex-math id="M1">\begin{document}$ 1&lt;p&lt;N $\end{document}</tex-math></inline-formula>, two measurable functions <inline-formula><tex-math id="M2">\begin{document}$ V\left(r \right)\geq 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ K\left(r\right)&gt; 0 $\end{document}</tex-math></inline-formula>, and a continuous function <inline-formula><tex-math id="M4">\begin{document}$ A(r) &gt;0 $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M5">\begin{document}$ r&gt;0 $\end{document}</tex-math></inline-formula>), we consider the quasilinear elliptic equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\mathrm{div}\left(A(|x| )|\nabla u|^{p-2} \nabla u\right) +V\left( \left| x\right| \right) |u|^{p-2}u = K(|x|) f(u) \quad \text{in }\mathbb{R}^{N}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where all the potentials <inline-formula><tex-math id="M6">\begin{document}$ A,V,K $\end{document}</tex-math></inline-formula> may be singular or vanishing, at the origin or at infinity. We find existence of nonnegative solutions by the application of variational methods, for which we need to study the compactness of the embedding of a suitable function space <inline-formula><tex-math id="M7">\begin{document}$ X $\end{document}</tex-math></inline-formula> into the sum of Lebesgue spaces <inline-formula><tex-math id="M8">\begin{document}$ L_{K}^{q_{1}}+L_{K}^{q_{2}} $\end{document}</tex-math></inline-formula>. The nonlinearity has a double-power super <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>-linear behavior, as <inline-formula><tex-math id="M10">\begin{document}$ f(t) = \min \left\{ t^{q_1 -1}, t^{q_2 -1} \right\} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M11">\begin{document}$ q_1,q_2&gt;p $\end{document}</tex-math></inline-formula> (recovering the power case if <inline-formula><tex-math id="M12">\begin{document}$ q_1 = q_2 $\end{document}</tex-math></inline-formula>). With respect to [<xref ref-type="bibr" rid="b6">6</xref>], in the present paper we assume some more hypotheses on <inline-formula><tex-math id="M13">\begin{document}$ V $\end{document}</tex-math></inline-formula>, and we are able to enlarge the set of values <inline-formula><tex-math id="M14">\begin{document}$ q_1 , q_2 $\end{document}</tex-math></inline-formula> for which we get existence results.</p>


Sign in / Sign up

Export Citation Format

Share Document