scholarly journals Finding a boundary for a Hilbert cube manifold

1976 ◽  
Vol 137 (0) ◽  
pp. 171-208 ◽  
Author(s):  
T. A. Chapman ◽  
L. C. Siebenmann

1981 ◽  
Vol 12 (1) ◽  
pp. 19-33
Author(s):  
T.A. Chapman




Author(s):  
Sergei M. Ageev ◽  
Duŝan Repovŝ

AbstractWe study Banach-Mazur compacta Q(n), that is, the sets of all isometry classes of n-dimensional Banach spaces topologized by the Banach-Mazur metric. Our main result is that Q(2) is homeomorphic to the compactification of a Hilbert cube manifold by a point, for we prove that Qg(2) = Q(2) / {Eucl.} is a Hilbert cube manifold. As a corollary it follows that Q(2) is not homogeneous.



1984 ◽  
Vol 112 (2) ◽  
pp. 407-426
Author(s):  
Luis Montejano Peimbert


1989 ◽  
Vol 80 (406) ◽  
pp. 0-0 ◽  
Author(s):  
H. Toruńczyk ◽  
J. West


1985 ◽  
Vol 120 (1) ◽  
pp. 153-178 ◽  
Author(s):  
Scott Metcalf


1983 ◽  
Vol 15 (2) ◽  
pp. 197-203
Author(s):  
Terry L. Lay ◽  
John J. Walsh
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document