CLT and other limit theorems for functionals of Gaussian processes

1985 ◽  
Vol 70 (2) ◽  
pp. 191-212 ◽  
Author(s):  
L. Giraitis ◽  
D. Surgailis
1991 ◽  
Vol 28 (01) ◽  
pp. 17-32 ◽  
Author(s):  
O. V. Seleznjev

We consider the limit distribution of maxima and point processes, connected with crossings of an increasing level, for a sequence of Gaussian stationary processes. As an application we investigate the limit distribution of the error of approximation of Gaussian stationary periodic processes by random trigonometric polynomials in the uniform metric.


1991 ◽  
Vol 28 (1) ◽  
pp. 17-32 ◽  
Author(s):  
O. V. Seleznjev

We consider the limit distribution of maxima and point processes, connected with crossings of an increasing level, for a sequence of Gaussian stationary processes. As an application we investigate the limit distribution of the error of approximation of Gaussian stationary periodic processes by random trigonometric polynomials in the uniform metric.


2019 ◽  
Vol 51 (03) ◽  
pp. 667-716
Author(s):  
Riccardo Passeggeri ◽  
Almut E. D. Veraart

AbstractIn this paper we introduce the multivariate Brownian semistationary (BSS) process and study the joint asymptotic behaviour of its realised covariation using in-fill asymptotics. First, we present a central limit theorem for general multivariate Gaussian processes with stationary increments, which are not necessarily semimartingales. Then, we show weak laws of large numbers, central limit theorems, and feasible results for BSS processes. An explicit example based on the so-called gamma kernels is also provided.


2019 ◽  
Vol 129 (11) ◽  
pp. 4791-4836 ◽  
Author(s):  
Jian Song ◽  
Fangjun Xu ◽  
Qian Yu

Sign in / Sign up

Export Citation Format

Share Document