Remarks on the strong law of large numbers for a triangular array of associated random variables

Metrika ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 225-234 ◽  
Author(s):  
Isha Dewan ◽  
B. L. S. Prakasa Rao
2016 ◽  
Vol 32 (1) ◽  
pp. 58-66 ◽  
Author(s):  
Qunying Wu ◽  
Yuanying Jiang

In this paper, we study the almost sure convergence for sequences of asymptotically negative associated (ANA) random variables. As a result, we extend the classical Khintchine–Kolmogorov convergence theorem, Marcinkiewicz strong law of large numbers, and the three series theorem for sequences of independent random variables to sequences of ANA random variables without necessarily adding any extra conditions.


Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1195-1206 ◽  
Author(s):  
Xuejun Wang ◽  
Zhiyong Chen ◽  
Ru Xiao ◽  
Xiujuan Xie

In this paper, the complete moment convergence and the integrability of the supremum for weighted sums of negatively orthant dependent (NOD, in short) random variables are presented. As applications, the complete convergence and the Marcinkiewicz-Zygmund type strong law of large numbers for NODrandom variables are obtained. The results established in the paper generalize some corresponding ones for independent random variables and negatively associated random variables.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Xuejun Wang ◽  
Shuhe Hu ◽  
Wenzhi Yang ◽  
Xinghui Wang

Let{Xni,i≥1,n≥1}be an array of rowwise asymptotically almost negatively associated (AANA, in short) random variables. The complete convergence for weighted sums of arrays of rowwise AANA random variables is studied, which complements and improves the corresponding result of Baek et al. (2008). As applications, the Baum and Katz type result for arrays of rowwise AANA random variables and the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of AANA random variables are obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Aiting Shen ◽  
Ranchao Wu

The strong law of large numbers for sequences of asymptotically almost negatively associated (AANA, in short) random variables is obtained, which generalizes and improves the corresponding one of Bai and Cheng (2000) for independent and identically distributed random variables to the case of AANA random variables. In addition, the Feller-type weak law of large number for sequences of AANA random variables is obtained, which generalizes the corresponding one of Feller (1946) for independent and identically distributed random variables.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


Sign in / Sign up

Export Citation Format

Share Document