Factor orbit equivalence of compact group extensions and classification of finite extensions of ergodic automorphisms

1987 ◽  
Vol 57 (1) ◽  
pp. 28-48 ◽  
Author(s):  
Marlies Gerber
1981 ◽  
Vol 38 (4) ◽  
pp. 289-303 ◽  
Author(s):  
Adam Fieldsteel

2002 ◽  
Vol 54 (5) ◽  
pp. 970-997 ◽  
Author(s):  
A. M. Cegarra ◽  
J. M. Garćia-Calcines ◽  
J. A. Ortega

AbstractIn this article we state and prove precise theorems on the homotopy classification of graded categorical groups and their homomorphisms. The results use equivariant group cohomology, and they are applied to show a treatment of the general equivariant group extension problem.


2016 ◽  
Vol 37 (6) ◽  
pp. 1966-1996
Author(s):  
KONSTANTIN SLUTSKY

The main result of the paper is classification of free multidimensional Borel flows up to Lebesgue orbit equivalence, by which we mean an orbit equivalence that preserves the Lebesgue measure on each orbit. Two non-smooth $\mathbb{R}^{d}$-flows are shown to be Lebesgue orbit equivalent if and only if they admit the same number of invariant ergodic probability measures.


1974 ◽  
Vol 18 (4) ◽  
pp. 363-389 ◽  
Author(s):  
H. B. Keynes’ ◽  
D. Newton

ISRN Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Samuel Coskey

We give a survey of Adrian Ioana's cocycle superrigidity theorem for profinite actions of Property (T) groups and its applications to ergodic theory and set theory in this expository paper. In addition to a statement and proof of Ioana's theorem, this paper features the following: (i) an introduction to rigidity, including a crash course in Borel cocycles and a summary of some of the best-known superrigidity theorems; (ii) some easy applications of superrigidity, both to ergodic theory (orbit equivalence) and set theory (Borel reducibility); and (iii) a streamlined proof of Simon Thomas's theorem that the classification of torsion-free abelian groups of finite rank is intractable.


Sign in / Sign up

Export Citation Format

Share Document