scholarly journals Turbulence, orbit equivalence, and the classification of nuclear C*-algebras

Author(s):  
Ilijas Farah ◽  
Andrew S. Toms ◽  
Asger Törnquist
Keyword(s):  
2020 ◽  
Vol 158 ◽  
pp. 103865
Author(s):  
Guihua Gong ◽  
Huaxin Lin
Keyword(s):  

2002 ◽  
Vol 85 (1) ◽  
pp. 168-210 ◽  
Author(s):  
MARIUS DADARLAT ◽  
SØREN EILERS

We employ results from KK-theory, along with quasidiagonality techniques, to obtain wide-ranging classification results for nuclear C*-algebras. Using a new realization of the Cuntz picture of the Kasparov groups we show that two morphisms inducing equal KK-elements are approximately stably unitarily equivalent. Using K-theory with coefficients to associate a partial KK-element to an approximate morphism, our result is generalized to cover such maps. Conversely, we study the problem of lifting a (positive) partial KK-element to an approximate morphism. These results are employed to obtain classification results for certain classes of quasidiagonal C*-algebras introduced by H. Lin, and to reprove the classification of purely infinite simple nuclear C*-algebras of Kirchberg and Phillips. It is our hope that this work can be the starting point of a unified approach to the classification of nuclear C*-algebras.2000 Mathematical Subject Classification: primary 46L35; secondary 19K14, 19K35, 46L80.


Author(s):  
Ola Bratteli ◽  
George Elliott ◽  
David Evans ◽  
Akitaka Kishimoto

2019 ◽  
Vol 62 (1) ◽  
pp. 201-231 ◽  
Author(s):  
JAMES GABE ◽  
EFREN RUIZ

AbstractThe semigroups of unital extensions of separable C*-algebras come in two flavours: a strong and a weak version. By the unital Ext-groups, we mean the groups of invertible elements in these semigroups. We use the unital Ext-groups to obtain K-theoretic classification of both unital and non-unital extensions of C*-algebras, and in particular we obtain a complete K-theoretic classification of full extensions of UCT Kirchberg algebras by stable AF algebras.


2019 ◽  
pp. 1-26
Author(s):  
Bo Cui ◽  
Chunlan Jiang ◽  
Liangqing Li

An ATAI (or ATAF, respectively) algebra, introduced in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (or in [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], respectively) is an inductive limit [Formula: see text], where each [Formula: see text] is a simple separable nuclear TAI (or TAF) C*-algebra with UCT property. In [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404], the second author classified all ATAI algebras by an invariant consisting orderd total [Formula: see text]-theory and tracial state spaces of cut down algebras under an extra restriction that all element in [Formula: see text] are torsion. In this paper, we remove this restriction, and obtained the classification for all ATAI algebras with the Hausdorffized algebraic [Formula: see text]-group as an addition to the invariant used in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404]. The theorem is proved by reducing the class to the classification theorem of [Formula: see text] algebras with ideal property which is done in [G. Gong, C. Jiang and L. Li, A classification of inductive limit C*-algebras with ideal property, preprint (2016), arXiv:1607.07681]. Our theorem generalizes the main theorem of [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (see Corollary 4.3).


2016 ◽  
Vol 37 (6) ◽  
pp. 1966-1996
Author(s):  
KONSTANTIN SLUTSKY

The main result of the paper is classification of free multidimensional Borel flows up to Lebesgue orbit equivalence, by which we mean an orbit equivalence that preserves the Lebesgue measure on each orbit. Two non-smooth $\mathbb{R}^{d}$-flows are shown to be Lebesgue orbit equivalent if and only if they admit the same number of invariant ergodic probability measures.


2014 ◽  
Vol 06 (04) ◽  
pp. 465-540 ◽  
Author(s):  
Karen R. Strung ◽  
Wilhelm Winter

In this paper we show that certain simple locally recursive subhomogeneous (RSH) C*-algebras are tracially approximately interval algebras after tensoring with the universal UHF algebra. This involves a linear algebraic encoding of the structure of the local RSH algebra allowing us to find a path through the algebra which looks like a discrete version of [0, 1] and exhausts most of the algebra. We produce an actual copy of the interval and use properties of C*-algebras tensored with UHF algebras to move the honest interval underneath the discrete version. It follows from our main result that such C*-algebras are classifiable by Elliott invariants. Our theorem requires finitely many tracial states that all induce the same state on the K0-group; in particular we do not require that projections separate tracial states. We apply our results to classify some examples of C*-algebras constructed by Elliott to exhaust the invariant. We also give an alternative way to classify examples of Lin and Matui of C*-algebras of minimal dynamical systems. In this way our result can be viewed as a first step towards removing the requirement that projections separate tracial states in the classification theorem for C*-algebras of minimal dynamical systems given by Toms and the second named author.


Sign in / Sign up

Export Citation Format

Share Document