Block cipher based on reversible cellular automata

2005 ◽  
Vol 23 (3) ◽  
pp. 245-258 ◽  
Author(s):  
Marcin Seredynski ◽  
Pascal Bouvry
Author(s):  
Yuliya Tanasyuk ◽  
Petro Burdeinyi

The given paper is devoted to the software development of block cipher based on reversible one-dimensional cellular automata and the study of its statistical properties. The software implementation of the proposed encryption algorithm is performed in C# programming language in Visual Studio 2017. The paper presents specially designed approach for key generation. To ensure desired cryptographic stability, the shared secret parameters can be adjusted to contain information needed for creating substitution tables, defining reversible rules, and hiding final data. For the first time, it is suggested to create substitution tables based on iterations of a cellular automaton that is initialized by the key data.


Author(s):  
Kamel Mohammed Faraoun

This paper proposes a semantically secure construction of pseudo-random permutations using second-order reversible cellular automata. We show that the proposed construction is equivalent to the Luby-Rackoff model if it is built using non-uniform transition rules, and we prove that the construction is strongly secure if an adequate number of iterations is performed. Moreover, a corresponding symmetric block cipher is constructed and analysed experimentally in comparison with popular ciphers. Obtained results approve robustness and efficacy of the construction, while achieved performances overcome those of some existing block ciphers.


Complexity ◽  
2014 ◽  
Vol 20 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Ramón Alonso-Sanz

Sign in / Sign up

Export Citation Format

Share Document