Witt equivalence of semilocal Dedekind domains in global fields

Author(s):  
B. Rothkegel ◽  
A. Czogała
2017 ◽  
Vol 369 (11) ◽  
pp. 7861-7881 ◽  
Author(s):  
Paweł Gładki ◽  
Murray Marshall

1991 ◽  
Vol 19 (4) ◽  
pp. 1125-1149 ◽  
Author(s):  
Kazimierz Szymiczek

2020 ◽  
Vol 30 (1) ◽  
pp. 63-78
Author(s):  
P. Gladki ◽  
◽  
M. Marshall

Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.


1988 ◽  
Vol 37 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Valentina Barucci ◽  
David E. Dobbs ◽  
S.B. Mulay

This paper characterises the integral domains R with the property that R/P is integrally closed for each prime ideal P of R. It is shown that Dedekind domains are the only Noetherian domains with this property. On the other hand, each integrally closed going-down domain has this property. Related properties and examples are also studied.


Sign in / Sign up

Export Citation Format

Share Document