Prime uniserial modules and rings

2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.

1971 ◽  
Vol 5 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Gilbert Baumslag

We establish the result that a finitely generated cyclic extension of a free group is residually finite. This is done, in part, by making use of the fact that a finitely generated module over a principal ideal domain is a direct sum of cyclic modules.


Author(s):  
R. Y. Sharp

In 5, I provided a method whereby the study of an Artinian module A over a commutative ring R (throughout the paper, R will denote a commutative ring with identity) can, for some purposes at least, be reduced to the study of an Artinian module A' over a complete (Noetherian) local ring; in the latter situation, Matlis' duality 1 (alternatively, see 6, ch. 5) is available, and this means that the investigation can often be converted into a dual one about a finitely generated module over a complete (Noetherian) local ring.


2010 ◽  
Vol 54 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Ilja Gogić

AbstractLet A be a C*-algebra and let ΘA be the canonical contraction form the Haagerup tensor product of M(A) with itself to the space of completely bounded maps on A. In this paper we consider the following conditions on A: (a) A is a finitely generated module over the centre of M(A); (b) the image of ΘA is equal to the set E(A) of all elementary operators on A; and (c) the lengths of elementary operators on A are uniformly bounded. We show that A satisfies (a) if and only if it is a finite direct sum of unital homogeneous C*-algebras. We also show that if a separable A satisfies (b) or (c), then A is necessarily subhomogeneous and the C*-bundles corresponding to the homogeneous subquotients of A must be of finite type.


Author(s):  
Fahad Sikander ◽  
Tanveer Fatima ◽  
Ayazul Hasan

A module M over an associative ring R with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of universal modules. In this paper, we investigate the class of QTAG-modules having nice basis. It is proved that if H_ω (M) is bounded then M has a bounded nice basis and if H_ω (M) is a direct sum of uniserial modules, then M has a nice basis. We also proved that if M is any QTAG-module, then M⊕D has a nice basis, where D is the h-divisible hull of H_ω (M).


1982 ◽  
Vol 86 ◽  
pp. 203-209 ◽  
Author(s):  
David Eisenbud ◽  
Wolmer Vasconcelos ◽  
Roger Wiegand

An R-module M is a generator (of the category of modules) provided every module is a homomorphic image of a suitable direct sum of copies of M. Equivalently, some M(k) has R as a summand. Except in the last section, all rings are assumed to be commutative, Noetherian domains, and modules are usually finitely generated. In this context generators are exactly those modules that have non-zero free summands locally. Of course, generators can fail to have free summands (e.g., over Dedekind domains), and we ask whether they necessarily have non-zero projective summands. The answer is “yes” for rings of dimension 1, as we point out in § 3, and for the polynomial ring in one variable over a Dedekind domain. In § 1 we show that for 2-dimensional rings the answer is intimately connected with the structure of projective modules. Our main result in the positive direction, Theorem 1.3, grew out of the attempt, in conversations with T. Stafford, to understand the case R = k[x, y]. In § 2 we give examples of rings having generators with no projective summands. The last section contains miscellaneous observations, some of them on rings without chain conditions.


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Alveera Mehdi ◽  
Fahad Sikander ◽  
Firdhousi Begum

A module M over an associative ring R with unity is a QTAG module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. There are many fascinating properties of QTAG modules of which h-pure submodules and high submodules are significant. A submodule N is quasi-h-dense in M if M/K is h-divisible, for every h-pure submodule K of M, containing N. Here we study these submodules and obtain some interesting results. Motivated by h-neat envelope, we also define h-pure envelope of a submodule N as the h-pure submodule K⊇N if K has no direct summand containing N. We find that h-pure envelopes of N have isomorphic basic submodules, and if M is the direct sum of uniserial modules, then all h-pure envelopes of N are isomorphic.


2021 ◽  
Vol 65 (3) ◽  
pp. 38-45
Author(s):  
Ayazul Hasan

A module M over an associative ring R with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. In this paper, we study the existence of several classes C of QTAG-modules which satisfy the property that M belongs to C uniquely when M/N belongs to C provided that N is a finitely generated submodule of the QTAG-module.


1980 ◽  
Vol 32 (6) ◽  
pp. 1277-1287 ◽  
Author(s):  
B. Sarath

The main object of this paper is to study when infective noetherian modules are artinian. This question was first raised by J. Fisher and an example of an injective noetherian module which is not artinian is given in [9]. However, it is shown in [4] that over commutative rings, and over hereditary noetherian P.I rings, injective noetherian does imply artinian. By combining results of [6] and [4] it can be shown that the above implication is true over any noetherian P.I ring. It is shown in this paper that injective noetherian modules are artinian over rings finitely generated as modules over their centers, and over semiprime rings of Krull dimension 1. It is also shown that every injective noetherian module over a P.I ring contains a simple submodule. Since any noetherian injective module is a finite direct sum of indecomposable injectives it suffices to study when such injectives are artinian. IfQis an injective indecomposable noetherian module, thenQcontains a non-zero submoduleQ0such that the endomorphism rings ofQ0and all its submodules are skewfields. Over a commutative ring, such aQ0is simple. In the non-commutative case very little can be concluded, and many of the difficulties seem to arise here.


2001 ◽  
Vol 27 (10) ◽  
pp. 641-643 ◽  
Author(s):  
M. R. Pournaki ◽  
M. Tousi

LetMbe a finitely-generated module over a Noetherian ringR. Suppose𝔞is an ideal ofRand letN=𝔞Mand𝔟=Ann(M/N). If𝔟⫅J(R),Mis complete with respect to the𝔟-adic topology,{Pi}i≥1is a countable family of prime submodules ofM, andx∈M, thenx+N⫅∪i≥1Piimplies thatx+N⫅Pjfor somei≥1. This extends a theorem of Sharp and Vámos concerning prime ideals to prime submodules.


Sign in / Sign up

Export Citation Format

Share Document