Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations

2006 ◽  
Vol 6 (2) ◽  
pp. 329-401 ◽  
Author(s):  
Peter A. Clarkson
2008 ◽  
Vol 06 (04) ◽  
pp. 349-369 ◽  
Author(s):  
PETER A. CLARKSON

Rational solutions of the Boussinesq equation are expressed in terms of special polynomials associated with rational solutions of the second and fourth Painlevé equations, which arise as symmetry reductions of the Boussinesq equation. Further generalized rational solutions of the Boussinesq equation, which involve an infinite number of arbitrary constants, are derived. The generalized rational solutions are analogs of such solutions for the Korteweg–de Vries and nonlinear Schrödinger equations.


2000 ◽  
Vol 159 ◽  
pp. 87-111 ◽  
Author(s):  
Makoto Taneda

We study the Yablonskii-Vorob’ev polynomial associated with the second Painlevé equation. To study other special polynomials (Okamoto polynomials, Umemura polynomials) associated with the Painlevé equations, our purely algebraic approach is useful.


Author(s):  
Nalini Joshi ◽  
Yang Shi

In this paper, we present a new method of deducing infinite sequences of exact solutions of q -discrete Painlevé equations by using their associated linear problems. The specific equation we consider in this paper is a q -discrete version of the second Painlevé equation ( q -P II ) with affine Weyl group symmetry of type ( A 2 + A 1 ) (1) . We show, for the first time, how to use the q -discrete linear problem associated with q -P II to find an infinite sequence of exact rational solutions and also show how to find their representation as determinants by using the linear problem. The method, while demonstrated for q -P II here, is also applicable to other discrete Painlevé equations.


2000 ◽  
Vol 159 ◽  
pp. 179-200 ◽  
Author(s):  
Satoshi Fukutani ◽  
Kazuo Okamoto ◽  
Hiroshi Umemura

We give a purely algebraic proof that the rational functions Pn(t), Qn(t) inductively defined by the recurrence relation (1), (2) respectively, are polynomials. The proof reveals the Hirota bilinear relations satisfied by the τ-functions.


Sign in / Sign up

Export Citation Format

Share Document