recurrence relation
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 96)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 38 (1) ◽  
pp. 149-158
Author(s):  
MIRCEA MERCA ◽  

In 1963, Peter Hagis, Jr. provided a Hardy-Ramanujan-Rademacher-type convergent series that can be used to compute an isolated value of the partition function $Q(n)$ which counts partitions of $n$ into distinct parts. Computing $Q(n)$ by this method requires arithmetic with very high-precision approximate real numbers and it is complicated. In this paper, we investigate new connections between partitions into distinct parts and overpartitions and obtain a surprising recurrence relation for the number of partitions of $n$ into distinct parts. By particularization of this relation, we derive two different linear recurrence relations for the partition function $Q(n)$. One of them involves the thrice square numbers and the other involves the generalized octagonal numbers. The recurrence relation involving the thrice square numbers provide a simple and fast computation of the value of $Q(n)$. This method uses only (large) integer arithmetic and it is simpler to program. Infinite families of linear inequalities involving partitions into distinct parts and overpartitions are introduced in this context.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012070
Author(s):  
Ben-Chao Yang ◽  
Xue-Feng Han

Abstract Recursive relation mainly describes the unique law satisfied by a sequence, so it plays an important role in almost all branches of mathematics. It is also one of the main algorithms commonly used in computer programming. This paper first introduces the concept of recursive relation and two common basic forms, then starts with the solution of linear recursive relation with non-homogeneous constant coefficients, gives a new solution idea, and gives a general proof. Finally, through an example, the general method and the new method given in this paper are compared and verified.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Dae San Kim ◽  
Hye Kyung Kim ◽  
Taekyun Kim ◽  
Hyunseok Lee ◽  
Seongho Park

AbstractIn this paper, we introduce multi-Lah numbers and multi-Stirling numbers of the first kind and recall multi-Bernoulli numbers, all of whose generating functions are given with the help of multiple logarithm. The aim of this paper is to study several relations among those three kinds of numbers. In more detail, we represent the multi-Bernoulli numbers in terms of the multi-Stirling numbers of the first kind and vice versa, and the multi-Lah numbers in terms of multi-Stirling numbers. In addition, we deduce a recurrence relation for multi-Lah numbers.


Author(s):  
Engi̇n Özkan ◽  
Mi̇ne Uysal ◽  
Bahar Kuloğlu

We introduce the Catalan transform of the Incomplete Jacobsthal numbers. We apply the Hankel transform to the Catalan transforms of these numbers. We calculate determinants of matrixes formed with [Formula: see text]by using Hankel transform. Then we define the incomplete [Formula: see text]-Jacobsthal polynomials. Then we examine the recurrence relation and some properties of these polynomials.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1162
Author(s):  
Khaled A. AL-Utaibi ◽  
Sadiq H. Abdulhussain ◽  
Basheera M. Mahmmod ◽  
Marwah Abdulrazzaq Naser ◽  
Muntadher Alsabah ◽  
...  

Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the initial value of the KP parameter. In addition, a new diagonal recurrence relation is introduced and used in the proposed algorithm. The diagonal recurrence algorithm was derived from the existing n direction and x direction recurrence algorithms. The diagonal and existing recurrence algorithms were subsequently exploited to compute the KP coefficients. First, the KP coefficients were computed for one partition after dividing the KP plane into four. To compute the KP coefficients in the other partitions, the symmetry relations were exploited. The performance evaluation of the proposed recurrence algorithm was determined through different comparisons which were carried out in state-of-the-art works in terms of reconstruction error, polynomial size, and computation cost. The obtained results indicate that the proposed algorithm is reliable and computes lesser coefficients when compared to the existing algorithms across wide ranges of parameter values of p and polynomial sizes N. The results also show that the improvement ratio of the computed coefficients ranges from 18.64% to 81.55% in comparison to the existing algorithms. Besides this, the proposed algorithm can generate polynomials of an order ∼8.5 times larger than those generated using state-of-the-art algorithms.


2021 ◽  
Vol 18 (10) ◽  
pp. 105201
Author(s):  
Haiqing Huang ◽  
Irfan Ahmed ◽  
Xin-wei Zha ◽  
Yanpeng Zhang

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1972
Author(s):  
Albertus C. den Brinker

Deployment of the recurrence relation or difference equation to generate discrete classical orthogonal polynomials is vulnerable to error propagation. This issue is addressed for the case of Krawtchouk functions, i.e., the orthonormal basis derived from the Krawtchouk polynomials. An algorithm is proposed for stable determination of these functions. This is achieved by defining proper initial points for the start of the recursions, balancing the order of the direction in which recursions are executed and adaptively restricting the range over which equations are applied. The adaptation is controlled by a user-specified deviation from unit norm. The theoretical background is given, the algorithmic concept is explained and the effect of controlled accuracy is demonstrated by examples.


2021 ◽  
Author(s):  
Rinki Imada ◽  
Tomohiro Tachi

Abstract Folded surfaces of origami tessellations have attracted much attention because they sometimes exhibit non-trivial behaviors. It is known that cylindrical folded surfaces of waterbomb tessellation called waterbomb tube can transform into wave-like surfaces, which is a unique phenomenon not observed on other tessellations. However, the theoretical reason why wave-like surfaces arise has been unclear. In this paper, we provide a kinematic model of waterbomb tube by parameterizing the geometry of a module of waterbomb tessellation and derive a recurrence relation between the modules. Through the visualization of the configurations of waterbomb tubes under the proposed kinematic model, we classify solutions into three classes: cylinder solution, wave-like solution, and finite solution. Furthermore, we give proof of the existence of a wave-like solution around one of the cylinder solutions by applying the knowledge of the discrete dynamical system to the recurrence relation.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hasan Sankari ◽  
Ahmad Abdo

In this study, we consider the number of polynomial solutions of the Pell equation x 2 − p t y 2 = 2 is formulated for a nonsquare polynomial p t using the polynomial solutions of the Pell equation x 2 − p t y 2 = 1 . Moreover, a recurrence relation on the polynomial solutions of the Pell equation x 2 − p t y 2 = 2 . Then, we consider the number of polynomial solutions of Diophantine equation E :   X 2 − p t Y 2 + 2 K t X + 2 p t L t Y = 0 . We also obtain some formulas and recurrence relations on the polynomial solution X n , Y n of E .


Sign in / Sign up

Export Citation Format

Share Document