Diophantine equations over ℂ(t) and complex multiplication

Author(s):  
Harvey Cohn
1989 ◽  
Vol 32 (2) ◽  
pp. 223-229
Author(s):  
Clara Wajngurt

AbstractIn this paper we establish a relationship between the rational solutions (x(t), y(t)), over C(t), of the diophantine equation:and the solutions which parametrize the elliptic curve E, y2 = 4x3 — g2x — g3 admitting complex multiplication by λ. We first characterize the form of all rational solutions of diophantine equation (1). The rational solutions are derivable from the subsititutionsin which μ = 0,ω1,ω2,ω1 + ω2 = ω3. Using techniques established in elliptic function theory, we prove that the complex multiplier λ, associated with a unique rational solution (x(t), y(t)), must be of a certain form. Next we construct all rational solutions of diophantine equation (1) by using the addition theorems valid for the Weierstrass function, Specific examples are finally worked out for the cases


Author(s):  
Reinhard Schertz

2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Jayashree Nair ◽  
T. Padma

This paper describes an authentication scheme that uses Diophantine equations based generation of the secret locations to embed the authentication and recovery watermark in the DWT sub-bands. The security lies in the difficulty of finding a solution to the Diophantine equation. The scheme uses the content invariant features of the image as a self-authenticating watermark and a quantized down sampled approximation of the original image as a recovery watermark for visual authentication, both embedded securely using secret locations generated from solution of the Diophantine equations formed from the PQ sequences. The scheme is mildly robust to Jpeg compression and highly robust to Jpeg2000 compression. The scheme also ensures highly imperceptible watermarked images as the spatio –frequency properties of DWT are utilized to embed the dual watermarks.


2018 ◽  
Vol 2020 (13) ◽  
pp. 3902-3926
Author(s):  
Réda Boumasmoud ◽  
Ernest Hunter Brooks ◽  
Dimitar P Jetchev

Abstract We consider cycles on three-dimensional Shimura varieties attached to unitary groups, defined over extensions of a complex multiplication (CM) field $E$, which appear in the context of the conjectures of Gan et al. [6]. We establish a vertical distribution relation for these cycles over an anticyclotomic extension of $E$, complementing the horizontal distribution relation of [8], and use this to define a family of norm-compatible cycles over these fields, thus obtaining a universal norm construction similar to the Heegner $\Lambda $-module constructed from Heegner points.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


Sign in / Sign up

Export Citation Format

Share Document