The exponent of convergence of a discontinuous Möbius group

Author(s):  
D. Ivaşcu
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


Mathematika ◽  
1966 ◽  
Vol 13 (1) ◽  
pp. 57-59 ◽  
Author(s):  
D. G. Larman

1970 ◽  
Vol 13 (1) ◽  
pp. 59-64 ◽  
Author(s):  
David W. Boyd

If U is an open set in Euclidean N-space EN which has finite Lebesgue measure |U| then a complete packing of U by open spheres is a collection C={Sn} of pairwise disjoint open spheres contained in U and such that Σ∞n=1|Sn| = |U|. Such packings exist by Vitali's theorem. An osculatory packing is one in which the spheres Sn are chosen recursively so that from a certain point on Sn+1 is the largest possible sphere contained in (Here S- will denote the closure of a set S). We give here a simple proof of the "well-known" fact that an osculatory packing is a complete packing. Our method of proof shows also that for osculatory packings, the Hausdorff dimension of the residual set is dominated by the exponent of convergence of the radii of the Sn.


2008 ◽  
Vol 17 (11) ◽  
pp. 1401-1413 ◽  
Author(s):  
RICHARD RANDELL ◽  
JONATHAN SIMON ◽  
JOSHUA TOKLE

The image of a polygonal knot K under a spherical inversion of ℝ3 ∪ ∞ is a simple closed curve made of arcs of circles, perhaps some line segments, having the same knot type as the mirror image of K. But suppose we reconnect the vertices of the inverted polygon with straight lines, making a new polygon [Formula: see text]. This may be a different knot type. For example, a certain 7-segment figure-eight knot can be transformed to a figure-eight knot, a trefoil, or an unknot, by selecting different inverting spheres. Which knot types can be obtained from a given original polygon K under this process? We show that for large n, most n-segment knot types cannot be reached from one initial n-segment polygon, using a single inversion or even the whole Möbius group. The number of knot types is bounded by the number of complementary domains of a certain system of round 2-spheres in ℝ3. We show the number of domains is at most polynomial in the number of spheres, and the number of spheres is itself a polynomial function of the number of edges of the original polygon. In the analysis, we obtain an exact formula for the number of complementary domains of any collection of round 2-spheres in ℝ3. On the other hand, the number of knot types that can be represented by n-segment polygons is exponential in n. Our construction can be interpreted as a particular instance of building polygonal knots in non-Euclidean metrics. In particular, start with a list of n vertices in ℝ3 and connect them with arcs of circles instead of line segments: Which knots can be obtained? Our polygonal inversion construction is equivalent to picking one fixed point p ∈ ℝ3 and replacing each edge of K by an arc of the circle determined by p and the endpoints of the edge.


1990 ◽  
Vol 33 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Shian Gao

We prove the following: Assume that , where p is an odd positive integer, g(ζ is a transcendental entire function with order of growth less than 1, and set A(z) = B(ezz). Then for every solution , the exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger conclusion holds. We also give an example to show that if the order of growth of g(ζ) equals 1 (or, in fact, equals an arbitrary positive integer), this conclusion doesn't hold.


Sign in / Sign up

Export Citation Format

Share Document