entire function
Recently Published Documents


TOTAL DOCUMENTS

550
(FIVE YEARS 76)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 7 (4) ◽  
pp. 5133-5145
Author(s):  
Jingjing Li ◽  
◽  
Zhigang Huang

<abstract><p>In this paper, we mainly investigate the radial distribution of Julia sets of difference operators of entire solutions of complex differential equation $ F(z)f^{n}(z)+P(z, f) = 0 $, where $ F(z) $ is a transcendental entire function and $ P(z, f) $ is a differential polynomial in $ f $ and its derivatives. We obtain that the set of common limiting directions of Julia sets of non-trivial entire solutions, their shifts have a definite range of measure. Moreover, an estimate of lower bound of measure of the set of limiting directions of Jackson difference operators of non-trivial entire solutions is given.</p></abstract>


2021 ◽  
Vol 56 (2) ◽  
pp. 149-161
Author(s):  
T. H. Nguyen ◽  
A. Vishnyakova

For an entire function $f(z) = \sum_{k=0}^\infty a_k z^k, a_k>0,$ we define its second quotients of Taylor coefficients as $q_k (f):= \frac{a_{k-1}^2}{a_{k-2}a_k}, k \geq 2.$ In the present paper, we study entire functions of order zerowith non-monotonic second quotients of Taylor coefficients. We consider those entire functions for which the even-indexed quotients are all equal and the odd-indexed ones are all equal:$q_{2k} = a>1$ and $q_{2k+1} = b>1$ for all $k \in \mathbb{N}.$We obtain necessary and sufficient conditions under which such functions belong to the Laguerre-P\'olya I class or, in our case, have only real negative zeros. In addition, we illustrate their relation to the partial theta function.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2335
Author(s):  
Ayman Shehata

The main aim of this paper is to introduce a new class of Lommel matrix polynomials with the help of hypergeometric matrix function within complex analysis. We derive several properties such as an entire function, order, type, matrix recurrence relations, differential equation and integral representations for Lommel matrix polynomials and discuss its various special cases. Finally, we establish an entire function, order, type, explicit representation and several properties of modified Lommel matrix polynomials. There are also several unique examples of our comprehensive results constructed.


Author(s):  
Vyacheslav I. Kuzovatov ◽  
◽  
Alexander M. Kytmanov ◽  
Azimbai Sadullaev ◽  

This article is devoted to the study of the properties of the zeta-function of zeros of entire function. We obtained an explicit expression for the kernel of the integral representation of the zetafunction in one case


2021 ◽  
Vol 103 (3) ◽  
pp. 44-53
Author(s):  
N.S. Imanbaev ◽  
◽  
Ye. Kurmysh ◽  
◽  

In this paper, we consider the question on study of zeros of an entire function of one class, which coincides with quasi-polynomials of exponential type. Eigenvalue problems for some classes of differential operators on a segment are reduced to a similar problem. In particular, the studied problem is led by the eigenvalue problem for a linear differential equation of the third order with regular boundary value conditions in the space W^3_2(0, 1). The studied entire function is adequately characteristic determinant of the spectral problem for a third-order linear differential operator with periodic boundary value conditions. An algorithm to construct a conjugate indicator diagram of an entire function of one class is indicated, which coincides with exponential type quasi-polynomials with comparable exponents according to the monograph by A.F. Leontyev. Existence of a countable number of zeros of the studied entire function in each series is proved, which are simultaneously eigenvalues of the above-mentioned third-order differential operator with regular boundary value conditions. We determine distance between adjacent zeros of each series, which lies on the rays perpendicular to sides of the conjugate indicator diagram, that is a regular hexagon on the complex plane. In this case, zero is not an eigenvalue of the considered operator, that is, zero is a regular point of the operator. Fundamental difference of this work is finding the corresponding eigenfunctions of the operator. System of eigenfunctions of the operator corresponding in each series is found. Adjoint operator is constructed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhijit Banerjee ◽  
Arpita Roy

PurposeThe paper aims to build the relationship between an entire function of restricted hyper-order with its linear c-shift operator.Design/methodology/approachStandard methodology for papers in difference and shift operators and value distribution theory have been used.FindingsThe relation between an entire function of restricted hyper-order with its linear c-shift operator was found under the periphery of sharing a set of two small functions IM (ignoring multiplicities) when exponent of convergence of zeros is strictly less than its order. This research work is an improvement and extension of two previous papers.Originality/valueThis is an original research work.


Author(s):  
Vasiliki Evdoridou ◽  
Leticia Pardo-Simón ◽  
David J. Sixsmith

AbstractThe set of points where an entire function achieves its maximum modulus is known as the maximum modulus set. In 1951, Hayman studied the structure of this set near the origin. Following work of Blumenthal, he showed that, near zero, the maximum modulus set consists of a collection of disjoint analytic curves, and provided an upper bound for the number of these curves. In this paper, we establish the exact number of these curves for all entire functions, except for a “small” set whose Taylor series coefficients satisfy a certain simple, algebraic condition. Moreover, we give new results concerning the structure of this set near the origin, and make an interesting conjecture regarding the most general case. We prove this conjecture for polynomials of degree less than four.


Author(s):  
D. A. Nicks ◽  
P. J. Rippon ◽  
G. M. Stallard

AbstractFor a transcendental entire function f, the property that there exists $$r>0$$ r > 0 such that $$m^n(r)\rightarrow \infty $$ m n ( r ) → ∞ as $$n\rightarrow \infty $$ n → ∞ , where $$m(r)=\min \{|f(z)|:|z|=r\}$$ m ( r ) = min { | f ( z ) | : | z | = r } , is related to conjectures of Eremenko and of Baker, for both of which order 1/2 minimal type is a significant rate of growth. We show that this property holds for functions of order 1/2 minimal type if the maximum modulus of f has sufficiently regular growth and we give examples to show the sharpness of our results by using a recent generalisation of Kjellberg’s method of constructing entire functions of small growth, which allows rather precise control of m(r).


Sign in / Sign up

Export Citation Format

Share Document