hausdorff dimension
Recently Published Documents


TOTAL DOCUMENTS

1317
(FIVE YEARS 193)

H-INDEX

41
(FIVE YEARS 4)

Author(s):  
Adrián Hinojosa-Calleja ◽  
Marta Sanz-Solé

AbstractConsider the linear stochastic biharmonic heat equation on a d–dimen- sional torus ($$d=1,2,3$$ d = 1 , 2 , 3 ), driven by a space-time white noise and with periodic boundary conditions: $$\begin{aligned} \left( \frac{\partial }{\partial t}+(-\varDelta )^2\right) v(t,x)= \sigma \dot{W}(t,x),\ (t,x)\in (0,T]\times {\mathbb {T}}^d, \end{aligned}$$ ∂ ∂ t + ( - Δ ) 2 v ( t , x ) = σ W ˙ ( t , x ) , ( t , x ) ∈ ( 0 , T ] × T d , $$v(0,x)=v_0(x)$$ v ( 0 , x ) = v 0 ( x ) . We find the canonical pseudo-distance corresponding to the random field solution, therefore the precise description of the anisotropies of the process. We see that for $$d=2$$ d = 2 , they include a $$z(\log \tfrac{c}{z})^{1/2}$$ z ( log c z ) 1 / 2 term. Consider D independent copies of the random field solution to (0.1). Applying the criteria proved in Hinojosa-Calleja and Sanz-Solé (Stoch PDE Anal Comp 2021. 10.1007/s40072-021-00190-1), we establish upper and lower bounds for the probabilities that the path process hits bounded Borel sets.This yields results on the polarity of sets and on the Hausdorff dimension of the path process.


2022 ◽  
pp. 1-7
Author(s):  
Alexandr Usachev

Abstract The paper deals with the sets of numbers from [0,1] such that their binary representation is almost convergent. The aim of the study is to compute the Hausdorff dimensions of such sets. Previously, the results of this type were proved for a single summation method (e.g. Cesàro, Abel, Toeplitz). This study extends the results to a wide range of matrix summation methods.


2022 ◽  
Vol 18 (0) ◽  
pp. 1
Author(s):  
Tim Austin

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ a &lt; b $\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id="M2">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id="M3">\begin{document}$ A,B $\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id="M4">\begin{document}$ [0,1] $\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id="M5">\begin{document}$ a $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id="M7">\begin{document}$ C : = A\times B $\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id="M8">\begin{document}$ L $\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id="M9">\begin{document}$ C $\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id="M10">\begin{document}$ \max\{\dim C,1\} - 1 $\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>


Author(s):  
Shuyi Lin ◽  
Jinjun Li ◽  
Manli Lou

Let [Formula: see text] denote the largest digit of the first [Formula: see text] terms in the Lüroth expansion of [Formula: see text]. Shen, Yu and Zhou, A note on the largest digits in Luroth expansion, Int. J. Number Theory 10 (2014) 1015–1023 considered the level sets [Formula: see text] and proved that each [Formula: see text] has full Hausdorff dimension. In this paper, we investigate the Hausdorff dimension of the following refined exceptional set: [Formula: see text] and show that [Formula: see text] has full Hausdorff dimension for each pair [Formula: see text] with [Formula: see text]. Combining the two results, [Formula: see text] can be decomposed into the disjoint union of uncountably many sets with full Hausdorff dimension.


Author(s):  
MEIYING LÜ ◽  
ZHENLIANG ZHANG

Abstract For any x in $[0,1)$ , let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be its continued fraction. Let $\psi :\mathbb {N}\to \mathbb {R}^+$ be such that $\psi (n) \to \infty $ as $n\to \infty $ . For any positive integers s and t, we study the set $$ \begin{align*}E(\psi)=\{(x,y)\in [0,1)^2: \max\{a_{sn}(x), a_{tn}(y)\}\ge \psi(n) \ {\text{for all sufficiently large}}\ n\in \mathbb{N}\} \end{align*} $$ and determine its Hausdorff dimension.


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 787-816
Author(s):  
Hongbin Lu ◽  
Weiyuan Qiu ◽  
Fei Yang

Abstract For McMullen maps f λ (z) = z p + λ/z p , where λ ∈ C \ { 0 } , it is known that if p ⩾ 3 and λ is small enough, then the Julia set J(f λ ) of f λ is a Cantor set of circles. In this paper we show that the Hausdorff dimension of J(f λ ) has the following asymptotic behavior dim H J ( f λ ) = 1 + log 2 log p + O ( | λ | 2 − 4 / p ) , as λ → 0 . An explicit error estimation of the remainder is also obtained. We also observe a ‘dimension paradox’ for the Julia set of Cantor set of circles.


Author(s):  
Olli Hirviniemi ◽  
István Prause ◽  
Eero Saksman

AbstractIn this article, we examine stretching and rotation of planar quasiconformal mappings on a line. We show that for almost every point on the line, the set of complex stretching exponents (describing stretching and rotation jointly) is contained in the disk $ \overline {B}(1/(1-k^{4}),k^{2}/(1-k^{4}))$ B ¯ ( 1 / ( 1 − k 4 ) , k 2 / ( 1 − k 4 ) ) . This yields a quadratic improvement over the known optimal estimate for general sets of Hausdorff dimension 1. Our proof is based on holomorphic motions and estimates for dimensions of quasicircles. We also give a lower bound for the dimension of the image of a 1-dimensional subset of a line under a quasiconformal mapping.


2021 ◽  
Vol 2021 (12) ◽  
pp. 124014
Author(s):  
Umut Şimşekli ◽  
Ozan Sener ◽  
George Deligiannidis ◽  
Murat A Erdogdu

Abstract Despite its success in a wide range of applications, characterizing the generalization properties of stochastic gradient descent (SGD) in non-convex deep learning problems is still an important challenge. While modeling the trajectories of SGD via stochastic differential equations (SDE) under heavy-tailed gradient noise has recently shed light over several peculiar characteristics of SGD, a rigorous treatment of the generalization properties of such SDEs in a learning theoretical framework is still missing. Aiming to bridge this gap, in this paper, we prove generalization bounds for SGD under the assumption that its trajectories can be well-approximated by a Feller process, which defines a rich class of Markov processes that include several recent SDE representations (both Brownian or heavy-tailed) as its special case. We show that the generalization error can be controlled by the Hausdorff dimension of the trajectories, which is intimately linked to the tail behavior of the driving process. Our results imply that heavier-tailed processes should achieve better generalization; hence, the tail-index of the process can be used as a notion of ‘capacity metric’. We support our theory with experiments on deep neural networks illustrating that the proposed capacity metric accurately estimates the generalization error, and it does not necessarily grow with the number of parameters unlike the existing capacity metrics in the literature.


Sign in / Sign up

Export Citation Format

Share Document