Spherical functions on symmetric graphs

Author(s):  
Alessandra Iozzi ◽  
Massimo A. Picardello
2019 ◽  
Vol 952 (10) ◽  
pp. 2-9
Author(s):  
Yu.M. Neiman ◽  
L.S. Sugaipova ◽  
V.V. Popadyev

As we know the spherical functions are traditionally used in geodesy for modeling the gravitational field of the Earth. But the gravitational field is not stationary either in space or in time (but the latter is beyond the scope of this article) and can change quite strongly in various directions. By its nature, the spherical functions do not fully display the local features of the field. With this in mind it is advisable to use spatially localized basis functions. So it is convenient to divide the region under consideration into segments with a nearly stationary field. The complexity of the field in each segment can be characterized by means of an anisotropic matrix resulting from the covariance analysis of the field. If we approach the modeling in this way there can arise a problem of poor coherence of local models on segments’ borders. To solve the above mentioned problem it is proposed in this article to use new basis functions with Mahalanobis metric instead of the usual Euclidean distance. The Mahalanobis metric and the quadratic form generalizing this metric enables us to take into account the structure of the field when determining the distance between the points and to make the modeling process continuous.


2021 ◽  
Vol 407 ◽  
pp. 126334
Author(s):  
Jing Jian Li ◽  
Jing Yang ◽  
Ran Ju ◽  
Hongping Ma

2020 ◽  
Vol 51 (4) ◽  
pp. 1893-1901
Author(s):  
Song-Tao Guo
Keyword(s):  

1984 ◽  
Vol 37 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Emo Welzl
Keyword(s):  

2011 ◽  
Vol 121 (3) ◽  
pp. 249-257
Author(s):  
MEHDI ALAEIYAN ◽  
B N ONAGH ◽  
M K HOSSEINIPOOR
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document