basis functions
Recently Published Documents


TOTAL DOCUMENTS

4617
(FIVE YEARS 746)

H-INDEX

101
(FIVE YEARS 8)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 223
Author(s):  
Pedro González-Rodelas ◽  
Miguel Pasadas ◽  
Abdelouahed Kouibia ◽  
Basim Mustafa

In this paper we propose an approximation method for solving second kind Volterra integral equation systems by radial basis functions. It is based on the minimization of a suitable functional in a discrete space generated by compactly supported radial basis functions of Wendland type. We prove two convergence results, and we highlight this because most recent published papers in the literature do not include any. We present some numerical examples in order to show and justify the validity of the proposed method. Our proposed technique gives an acceptable accuracy with small use of the data, resulting also in a low computational cost.


2022 ◽  
pp. 107754632110593
Author(s):  
Mohammad Hossein Heydari ◽  
Mohsen Razzaghi ◽  
Zakieh Avazzadeh

In this study, the orthonormal piecewise Bernoulli functions are generated as a new kind of basis functions. An explicit matrix related to fractional integration of these functions is obtained. An efficient direct method is developed to solve a novel set of optimal control problems defined using a fractional integro-differential equation. The presented technique is based on the expressed basis functions and their fractional integral matrix together with the Gauss–Legendre integration method and the Lagrange multipliers algorithm. This approach converts the original problem into a mathematical programming one. Three examples are investigated numerically to verify the capability and reliability of the approach.


Author(s):  
Poorvi Shukla ◽  
J. J. W. van der Vegt

AbstractA new higher-order accurate space-time discontinuous Galerkin (DG) method using the interior penalty flux and discontinuous basis functions, both in space and in time, is presented and fully analyzed for the second-order scalar wave equation. Special attention is given to the definition of the numerical fluxes since they are crucial for the stability and accuracy of the space-time DG method. The theoretical analysis shows that the DG discretization is stable and converges in a DG-norm on general unstructured and locally refined meshes, including local refinement in time. The space-time interior penalty DG discretization does not have a CFL-type restriction for stability. Optimal order of accuracy is obtained in the DG-norm if the mesh size h and the time step $$\Delta t$$ Δ t satisfy $$h\cong C\Delta t$$ h ≅ C Δ t , with C a positive constant. The optimal order of accuracy of the space-time DG discretization in the DG-norm is confirmed by calculations on several model problems. These calculations also show that for pth-order tensor product basis functions the convergence rate in the $$L^\infty$$ L ∞ and $$L^2$$ L 2 -norms is order $$p+1$$ p + 1 for polynomial orders $$p=1$$ p = 1 and $$p=3$$ p = 3 and order p for polynomial order $$p=2$$ p = 2 .


2022 ◽  
Vol 134 ◽  
pp. 398-411
Author(s):  
W.F. Florez ◽  
V. Popov ◽  
J.P. Gaviria-Cardona ◽  
C.A. Bustamante ◽  
H.V. Martínez-Tejada ◽  
...  

Author(s):  
Osval Antonio Montesinos López ◽  
Abelardo Montesinos López ◽  
Jose Crossa

AbstractThis chapter deals with the main theoretical fundamentals and practical issues of using functional regression in the context of genomic prediction. We explain how to represent data in functions by means of basis functions and considered two basis functions: Fourier for periodic or near-periodic data and B-splines for nonperiodic data. We derived the functional regression with a smoothed coefficient function under a fixed model framework and some examples are also provided under this model. A Bayesian version of functional regression is outlined and explained and all details for its implementation in glmnet and BGLR are given. The examples take into account in the predictor the main effects of environments and genotypes and the genotype × environment interaction term. The examples are done with small data sets so that the user can run them on his/her own computer and can understand the implementation process.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012014
Author(s):  
Mengyu Zhang ◽  
Hua Wu

Abstract A triangular spectral element method is established for the two-dimensional viscous Burgers equation. In the spatial direction, a new type of mapping is applied. We splice the local basis functions on each triangle into a global basis function. The second-order Crank-Nicolson/ leap-frog (CNLF) method is used for discretization in the time direction. Due to the use of a quasi-interpolation operator, the nonlinear term can be handled conveniently. We give the fully discrete scheme of the method and the implementation process of the algorithm. Numerical examples verify the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document