Unitary colligations in Krein spaces and their role in the extension theory of isometries and symmetric linear relations in Hilbert spaces

Author(s):  
Aad Dijksma ◽  
Heinz Langer ◽  
Henk de Snoo
2020 ◽  
Vol 38 (1) ◽  
pp. 60-90 ◽  
Author(s):  
Josué I. Rios-Cangas ◽  
Luis O. Silva

2020 ◽  
Vol 46 (2) ◽  
pp. 265-282
Author(s):  
A. Ghorbel ◽  
M. Mnif

2021 ◽  
Vol 20 ◽  
pp. 144-151
Author(s):  
Osmin Ferrer ◽  
Luis Lazaro ◽  
Jorge Rodriguez

A definition of Bessel’s sequences in spaces with an indefinite metric is introduced as a generalization of Bessel’s sequences in Hilbert spaces. Moreover, a complete characterization of Bessel’s sequences in the Hilbert space associated to a space with an indefinite metric is given. The fundamental tools of Bessel’s sequences theory are described in the formalism of spaces with an indefinite metric. It is shown how to construct a Bessel’s sequences in spaces with an indefinite metric starting from a pair of Hilbert spaces, a condition is given to decompose a Bessel’s sequences into in spaces with an indefinite metric so that this decomposition generates a pair of Bessel’s sequences for the Hilbert spaces corresponding to the fundamental decomposition. In spaces where there was no norm, it seemed impossible to construct Bessel’s sequences. The fact that in [1] frame were constructed for Krein spaces motivated us to construct Bessel’s sequences for spaces of indefinite metric.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Zsigmond Tarcsay ◽  
Zoltán Sebestyén

AbstractGiven a closed linear relation T between two Hilbert spaces $$\mathcal {H}$$ H and $$\mathcal {K}$$ K , the corresponding first and second coordinate projections $$P_T$$ P T and $$Q_T$$ Q T are both linear contractions from T to $$\mathcal {H}$$ H , and to $$\mathcal {K}$$ K , respectively. In this paper we investigate the features of these graph contractions. We show among other things that $$P_T^{}P_T^*=(I+T^*T)^{-1}$$ P T P T ∗ = ( I + T ∗ T ) - 1 , and that $$Q_T^{}Q_T^*=I-(I+TT^*)^{-1}$$ Q T Q T ∗ = I - ( I + T T ∗ ) - 1 . The ranges $${\text {ran}}P_T^{*}$$ ran P T ∗ and $${\text {ran}}Q_T^{*}$$ ran Q T ∗ are proved to be closely related to the so called ‘regular part’ of T. The connection of the graph projections to Stone’s decomposition of a closed linear relation is also discussed.


Sign in / Sign up

Export Citation Format

Share Document