scholarly journals Poincaré lemma for a variation of polarized hodge structure

1987 ◽  
pp. 115-124
Author(s):  
Masaki Kashiwara
1985 ◽  
Vol 61 (6) ◽  
pp. 164-167 ◽  
Author(s):  
Masaki Kashiwara ◽  
Takahiro Kawai

Author(s):  
Masaki Kashiwara ◽  
Takahiro Kawai

2011 ◽  
Vol 148 (1) ◽  
pp. 269-294 ◽  
Author(s):  
Eric Katz ◽  
Alan Stapledon

AbstractWe construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to the Hodge–Deligne polynomial of the limit mixed Hodge structure of a corresponding degeneration. We give purely combinatorial expressions for this Hodge–Deligne polynomial in the cases of schön hypersurfaces and matroidal tropical varieties. We also deduce a formula for the Euler characteristic of a general fiber of the degeneration.


1958 ◽  
Vol 9 (2) ◽  
pp. 183
Author(s):  
H. K. Nickerson
Keyword(s):  

2011 ◽  
Vol 61 (3) ◽  
pp. 663-674 ◽  
Author(s):  
Glenn Barnich ◽  
Maxim Grigoriev
Keyword(s):  

2016 ◽  
Vol 152 (7) ◽  
pp. 1398-1420 ◽  
Author(s):  
Dan Petersen

We prove that the tautological ring of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$, the moduli space of $n$-pointed genus two curves of compact type, does not have Poincaré duality for any $n\geqslant 8$. This result is obtained via a more general study of the cohomology groups of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$. We explain how the cohomology can be decomposed into pieces corresponding to different local systems and how the tautological cohomology can be identified within this decomposition. Our results allow the computation of $H^{k}({\mathcal{M}}_{2,n}^{\mathsf{ct}})$ for any $k$ and $n$ considered both as $\mathbb{S}_{n}$-representation and as mixed Hodge structure/$\ell$-adic Galois representation considered up to semi-simplification. A consequence of our results is also that all even cohomology of $\overline{{\mathcal{M}}}_{2,n}$ is tautological for $n<20$, and that the tautological ring of $\overline{{\mathcal{M}}}_{2,n}$ fails to have Poincaré duality for all $n\geqslant 20$. This improves and simplifies results of the author and Orsola Tommasi.


2020 ◽  
Vol 2020 (762) ◽  
pp. 167-194
Author(s):  
Salim Tayou

AbstractWe prove the equidistribution of the Hodge locus for certain non-isotrivial, polarized variations of Hodge structure of weight 2 with {h^{2,0}=1} over complex, quasi-projective curves. Given some norm condition, we also give an asymptotic on the growth of the Hodge locus. In particular, this implies the equidistribution of elliptic fibrations in quasi-polarized, non-isotrivial families of K3 surfaces.


2017 ◽  
Vol 153 (7) ◽  
pp. 1349-1371 ◽  
Author(s):  
Eduard Looijenga

Let $X$ be an irreducible complex-analytic variety, ${\mathcal{S}}$ a stratification of $X$ and ${\mathcal{F}}$ a holomorphic vector bundle on the open stratum ${X\unicode[STIX]{x0030A}}$. We give geometric conditions on ${\mathcal{S}}$ and ${\mathcal{F}}$ that produce a natural lift of the Chern class $\operatorname{c}_{k}({\mathcal{F}})\in H^{2k}({X\unicode[STIX]{x0030A}};\mathbb{C})$ to $H^{2k}(X;\mathbb{C})$, which, in the algebraic setting, is of Hodge level ${\geqslant}k$. When applied to the Baily–Borel compactification $X$ of a locally symmetric variety ${X\unicode[STIX]{x0030A}}$ and an automorphic vector bundle ${\mathcal{F}}$ on ${X\unicode[STIX]{x0030A}}$, this refines a theorem of Goresky–Pardon. In passing we define a class of simplicial resolutions of the Baily–Borel compactification that can be used to define its mixed Hodge structure. We use this to show that the stable cohomology of the Satake ($=$ Baily–Borel) compactification of ${\mathcal{A}}_{g}$ contains nontrivial Tate extensions.


Sign in / Sign up

Export Citation Format

Share Document