scholarly journals On the equidistribution of some Hodge loci

2020 ◽  
Vol 2020 (762) ◽  
pp. 167-194
Author(s):  
Salim Tayou

AbstractWe prove the equidistribution of the Hodge locus for certain non-isotrivial, polarized variations of Hodge structure of weight 2 with {h^{2,0}=1} over complex, quasi-projective curves. Given some norm condition, we also give an asymptotic on the growth of the Hodge locus. In particular, this implies the equidistribution of elliptic fibrations in quasi-polarized, non-isotrivial families of K3 surfaces.

Author(s):  
Alice Garbagnati

Abstract We discuss the birational geometry and the Kodaira dimension of certain varieties previously constructed by Schreieder, proving that in any dimension they admit an elliptic fibration and they are not of general type. The $l$-dimensional variety $Y_{(n)}^{(l)}$, which is the quotient of the product of a certain curve $C_{(n)}$ by itself $l$ times by a group $G\simeq \left ({\mathbb{Z}}/n{\mathbb{Z}}\right )^{l-1}$ of automorphisms, was constructed by Schreieder to obtain varieties with prescribed Hodge numbers. If $n=3^c$ Schreieder constructed an explicit smooth birational model of it, and Flapan proved that the Kodaira dimension of this smooth model is 1, if $c>1$; if $l=2$ it is a modular elliptic surface; if $l=3$ it admits a fibration in K3 surfaces. In this paper we generalize these results: without any assumption on $n$ and $l$ we prove that $Y_{(n)}^{(l)}$ admits many elliptic fibrations and its Kodaira dimension is at most 1. Moreover, if $l=2$, its minimal resolution is a modular elliptic surface, obtained by a base change of order $n$ on a specific extremal rational elliptic surface; if $l\geq 3$ it has a birational model that admits a fibration in K3 surfaces and a fibration in $(l-1)$-dimensional varieties of Kodaira dimension at most 0.


2012 ◽  
Vol 206 ◽  
pp. 1-24
Author(s):  
Chris Peters ◽  
Morihiko Saito

AbstractLetXbe an irreducible complex analytic space withj:U ↪ Xan immersion of a smooth Zariski-open subset, and let 𝕍 be a variation of Hodge structure of weightnoverU. Assume thatXis compact Kähler. Then, provided that the local monodromy operators at infinity are quasi-unipotent,IHk(X, 𝕍) is known to carry a pure Hodge structure of weightk+n, whileHk(U, 𝕍) carries a mixed Hodge structure of weight at leastk+n. In this note it is shown that the image of the natural mapIHk(X, 𝕍) →Hk(U, 𝕍) is the lowest-weight part of this mixed Hodge structure. In the algebraic case this easily follows from the formalism of mixed sheaves, but the analytic case is rather complicated, in particular when the complementX — Uis not a hypersurface.


Author(s):  
Julian Lawrence Demeio

Abstract For a number field $K$, an algebraic variety $X/K$ is said to have the Hilbert Property if $X(K)$ is not thin. We are going to describe some examples of algebraic varieties, for which the Hilbert Property is a new result. The first class of examples is that of smooth cubic hypersurfaces with a $K$-rational point in ${\mathbb{P}}_n/K$, for $n \geq 3$. These fall in the class of unirational varieties, for which the Hilbert Property was conjectured by Colliot-Thélène and Sansuc. We then provide a sufficient condition for which a surface endowed with multiple elliptic fibrations has the Hilbert Property. As an application, we prove the Hilbert Property of a class of K3 surfaces, and some Kummer surfaces.


Sign in / Sign up

Export Citation Format

Share Document