Spectral theory of unitary operators

Author(s):  
Martine Queffélec
Author(s):  
Yuli Eidelman ◽  
Vitali Milman ◽  
Antonis Tsolomitis

2019 ◽  
pp. 395-400
Author(s):  
K. Kong Wan

1987 ◽  
Vol 28 (9) ◽  
pp. 1941-1946 ◽  
Author(s):  
C. S. Sharma ◽  
T. J. Coulson

2018 ◽  
Vol 60 (3) ◽  
pp. 578-598
Author(s):  
Yu. L. Ershov ◽  
M. V. Schwidefsky

2016 ◽  
Vol 75 (16) ◽  
pp. 1417-1433 ◽  
Author(s):  
Yurii Konstantinovich Sirenko ◽  
K. Yu. Sirenko ◽  
H. O. Sliusarenko ◽  
N. P. Yashina

1986 ◽  
Author(s):  
John E. White ◽  
Jason L. Speyer

Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


Sign in / Sign up

Export Citation Format

Share Document