Generalized solutions of nonlinear partial differential equations

Author(s):  
Hebe de Azevedo Biagioni
2011 ◽  
Vol 2011 ◽  
pp. 1-37
Author(s):  
Jan Harm van der Walt

The method of order completion provides a general and type-independent theory for the existence and basic regularity of the solutions of large classes of systems of nonlinear partial differential equations (PDEs). Recently, the application of convergence spaces to this theory resulted in a significant improvement upon the regularity of the solutions and provided new insight into the structure of solutions. In this paper, we show how this method may be adapted so as to allow for the infinite differentiability of generalized functions. Moreover, it is shown that a large class of smooth nonlinear PDEs admit generalized solutions in the space constructed here. As an indication of how the general theory can be applied to particular nonlinear equations, we construct generalized solutions of the parametrically driven, damped nonlinear Schrödinger equation in one spatial dimension.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document