Distance and volume decreasing theorems for a family of harmonic mappings of riemannian manifolds

Author(s):  
N. C. Petridis
2019 ◽  
Vol 188 ◽  
pp. 405-424
Author(s):  
Chang-Yu Guo ◽  
Chang-Lin Xiang

1964 ◽  
Vol 86 (1) ◽  
pp. 109 ◽  
Author(s):  
James Eells ◽  
J. H. Sampson

1975 ◽  
Vol 37 ◽  
pp. 257 ◽  
Author(s):  
Stefan Hildebrandt ◽  
Helmut Kaul ◽  
Kjell-ove Widman

Harmonic Maps ◽  
1992 ◽  
pp. 1-52
Author(s):  
JAMES EELLS ◽  
J. H. SAMPSON

1976 ◽  
Vol 147 (3) ◽  
pp. 225-236 ◽  
Author(s):  
Stefan Hildebrandt ◽  
Helmut Kaul ◽  
Kjell-Ove Widman

2021 ◽  
pp. 2150039
Author(s):  
Xiangao Liu ◽  
Zixuan Liu ◽  
Kui Wang

Motivated by Giaquinta and Hildebrandt’s regularity result for harmonic mappings [M. Giaquinta and S. Hildebrandt, A priori estimates for harmonic mappings, J. Reine Angew. Math. 1982(336) (1982) 124–164, Theorems 3 and 4], we show a [Formula: see text]-regularity result of the harmonic flow between two Riemannian manifolds when the image is in a regular geodesic ball. The proof is based on De Giorgi–Moser’s iteration and Schauder estimate.


Sign in / Sign up

Export Citation Format

Share Document