scholarly journals Two-photon exchange in leptophilic dark matter scenarios

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Raghuveer Garani ◽  
Federico Gasparotto ◽  
Pierpaolo Mastrolia ◽  
Henrik J. Munch ◽  
Sergio Palomares-Ruiz ◽  
...  

Abstract In leptophilic scenarios, dark matter interactions with nuclei, relevant for direct detection experiments and for the capture by celestial objects, could only occur via loop-induced processes. If the mediator is a scalar or pseudo-scalar particle, which only couples to leptons, the dominant contribution to dark matter-nucleus scattering would take place via two-photon exchange with a lepton triangle loop. The corresponding diagrams have been estimated in the literature under different approximations. Here, we present new analytical calculations for one-body two-loop and two-body one-loop interactions. The two-loop form factors are presented in closed analytical form in terms of generalized polylogarithms up to weight four. In both cases, we consider the exact dependence on all the involved scales, and study the dependence on the momentum transfer. We show that some previous approximations fail to correctly predict the scattering cross section by several orders of magnitude. Moreover, we quantitatively show that form factors in the range of momentum transfer relevant for local galactic dark matter, can be significantly smaller than their value at zero momentum transfer, which is the approach usually considered.

2019 ◽  
Vol 488 (4) ◽  
pp. 5788-5801 ◽  
Author(s):  
Angela Collier ◽  
Isaac Shlosman ◽  
Clayton Heller

ABSTRACT We study non-linear response of spinning dark matter (DM) haloes to dynamic and secular evolution of stellar bars in the embedded galactic discs, using high-resolution numerical simulations. For a sequence of haloes with the cosmological spin parameter λ = 0–0.09, and a representative angular momentum distribution, we analyse evolution of induced DM bars amplitude and quantify parameters of the response as well as trapping of DM orbits and angular momentum transfer by the main and secondary resonances. We find that (1) maximal amplitude of DM bars depends strongly on λ, while that of the stellar bars is indifferent to λ; (2) efficiency of resonance trapping of DM orbits by the bar increases with λ, and so is the mass and the volume of DM bars; (3) contribution of resonance transfer of angular momentum to the DM halo increases with λ, and for larger spin, the DM halo ‘talks’ to itself, by moving the angular momentum to larger radii – this process is maintained by resonances; and (4) prograde and retrograde DM orbits play different roles in angular momentum transfer. The ‘active’ part of the halo extends well beyond the bar region, up to few times the bar length in equatorial plane and away from this plane. (5) We model evolution of discless DM haloes and haloes with frozen discs, and found them to be perfectly stable to any Fourier modes. Finally, further studies adopting a range of mass and specific angular momentum distributions of the DM halo will generalize the dependence of DM response on the halo spin and important implications for direct detection of DM and that of the associated stellar tracers, such as streamers.


2015 ◽  
Vol 78 (3) ◽  
pp. 394-403 ◽  
Author(s):  
D. M. Nikolenko ◽  
J. Arrington ◽  
L. M. Barkov ◽  
H. de Vries ◽  
V. V. Gauzshtein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document