Journal of High Energy Physics
Latest Publications


TOTAL DOCUMENTS

34936
(FIVE YEARS 11631)

H-INDEX

247
(FIVE YEARS 66)

Published By Springer-Verlag

1029-8479, 1126-6708

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Guillermo Ballesteros ◽  
Sebastián Céspedes ◽  
Luca Santoni

Abstract We study the generation of a large power spectrum, necessary for primordial black hole formation, within the effective theory of single-field inflation. The mechanisms we consider include a transition into a ghost-inflation-like phase and scenarios where an exponentially growing mode is temporarily turned on. In the cases we discuss, the enhancement in the power spectrum results from either a swift change in some effective coupling or a modification of the dispersion relation for the perturbations, while the background evolution remains unchanged and approximately de Sitter throughout inflation. The robustness of the results is guaranteed thanks to a weakly broken galileon symmetry, which protects the effective couplings against large quantum corrections. We discuss how the enhancement of the power spectrum is related to the energy scale of the operators with weakly broken galileon invariance, and study the limits imposed by strong coupling and the validity of the perturbative expansion.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Matthew Buican ◽  
Rajath Radhakrishnan

Abstract We study Galois actions on 2+1D topological quantum field theories (TQFTs), characterizing their interplay with theory factorization, gauging, the structure of gapped boundaries and dualities, 0-form symmetries, 1-form symmetries, and 2-groups. In order to gain a better physical understanding of Galois actions, we prove sufficient conditions for the preservation of unitarity. We then map out the Galois orbits of various classes of unitary TQFTs. The simplest such orbits are trivial (e.g., as in various theories of physical interest like the Toric Code, Double Semion, and 3-Fermion Model), and we refer to such theories as unitary “Galois fixed point TQFTs”. Starting from these fixed point theories, we study conditions for preservation of Galois invariance under gauging 0-form and 1-form symmetries (as well as under more general anyon condensation). Assuming a conjecture in the literature, we prove that all unitary Galois fixed point TQFTs can be engineered by gauging 0-form symmetries of theories built from Deligne products of certain abelian TQFTs.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Osmin Lacombe ◽  
George K. Leontaris

Abstract We present an explicit string realisation of a cosmological inflationary scenario we proposed recently within the framework of type IIB flux compactifications in the presence of three magnetised D7-brane stacks. Inflation takes place around a metastable de Sitter vacuum. The inflaton is identified with the volume modulus and has a potential with a very shallow minimum near the maximum. Inflation ends due to the presence of “waterfall” fields that drive the evolution of the Universe from a nearby saddle point towards a global minimum with tuneable vacuum energy describing the present state of our Universe.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Nabamita Banerjee ◽  
Tabasum Rahnuma ◽  
Ranveer Kumar Singh

Abstract Asymptotic symmetry plays an important role in determining physical observables of a theory. Recently, in the context of four dimensional asymptotically flat pure gravity and $$ \mathcal{N} $$ N = 1 supergravity, it has been proposed that OPEs of appropriate celestial amplitudes can be used to find their asymptotic symmetries. In this paper we find the asymptotic symmetry algebras of four dimensional Einstein-Yang-Mills and Einstein-Maxwell theories using this alternative approach, namely using the OPEs of their respective celestial amplitudes. The algebra obtained here are in agreement with the known results in the literature.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
F. J. Abudinen Gallego ◽  
...  

Abstract Using proton-proton collision data, corresponding to an integrated luminosity of 9 fb−1 collected with the LHCb detector, seven decay modes of the $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + meson into a J/ψ or ψ(2S) meson and three charged hadrons, kaons or pions, are studied. The decays $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → (ψ(2S) → J/ψπ+π−)π+, $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → ψ(2S)π+π−π+, $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → J/ψK+π−π+ and $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → J/ψK+K−K+ are observed for the first time, and evidence for the $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + → ψ(2S)K+K−π+, decay is found, where J/ψ and ψ(2S) mesons are reconstructed in their dimuon decay modes. The ratios of branching fractions between the different $$ {\mathrm{B}}_{\mathrm{c}}^{+} $$ B c + decays are reported as well as the fractions of the decays proceeding via intermediate resonances. The results largely support the factorisation approach used for a theoretical description of the studied decays.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Masashi Hamanaka ◽  
Shan-Chi Huang

Abstract We study dynamics of multi-soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2, ℂ) in four-dimensional spaces. The one-soliton solution can be interpreted as a codimension-one soliton in four-dimensional spaces because the principal peak of action density localizes on a three-dimensional hyperplane. We call it the soliton wall. We prove that in the asymptotic region, the n-soliton solution possesses n isolated localized lumps of action density, and interpret it as n intersecting soliton walls. More precisely, each action density lump is essentially the same as a soliton wall because it preserves its shape and “velocity” except for a position shift of principal peak in the scattering process. The position shift results from the nonlinear interactions of the multi-solitons and is called the phase shift. We calculate the phase shift factors explicitly and find that the action densities can be real-valued in three kind of signatures. Finally, we show that the gauge group can be G = SU(2) in the Ultrahyperbolic space 𝕌 (the split signature (+, +, −, −)). This implies that the intersecting soliton walls could be realized in all region in N=2 string theories. It is remarkable that quasideterminants dramatically simplify the calculations and proofs.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy ◽  
Matthew J. Smylie

Abstract We reinterpret two recent LHC searches for events containing four top quarks $$ \left(t\overline{t}t\overline{t}\right) $$ t t ¯ t t ¯ in the context of supersymmetric models with Dirac gauginos and color-octet scalars (sgluons). We explore whether sgluon contributions to the four-top production cross section $$ \sigma \left( pp\to t\overline{t}t\overline{t}\right) $$ σ pp → t t ¯ t t ¯ can accommodate an excess of four-top events recently reported by the ATLAS collaboration. We also study constraints on these models from an ATLAS search for new phenomena with high jet multiplicity and significant missing transverse energy $$ \left({E}_{\mathrm{T}}^{\mathrm{miss}}\right) $$ E T miss sensitive to signals with four top quarks. We find that these two analyses provide complementary constraints, with the jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss search exceeding the four-top cross section measurement in sensitivity for sgluons heavier than about 800 GeV. We ultimately find that either a scalar or a pseudoscalar sgluon can currently fit the ATLAS excess in a range of reasonable benchmark scenarios, though a pseudoscalar in minimal Dirac gaugino models is ruled out. We finally offer sensitivity projections for these analyses at the HL-LHC, mapping the 5σ discovery potential in sgluon parameter space and computing exclusion limits at 95% CL in scenarios where no excess is found.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
N. Ahmadiniaz ◽  
V. M. Banda Guzmán ◽  
F. Bastianelli ◽  
O. Corradini ◽  
J. P. Edwards ◽  
...  

Abstract In the first part of this series, we employed the second-order formalism and the “symbol” map to construct a particle path-integral representation of the electron propagator in a background electromagnetic field, suitable for open fermion-line calculations. Its main advantages are the avoidance of long products of Dirac matrices, and its ability to unify whole sets of Feynman diagrams related by permutation of photon legs along the fermion lines. We obtained a Bern-Kosower type master formula for the fermion propagator, dressed with N photons, in terms of the “N-photon kernel,” where this kernel appears also in “subleading” terms involving only N − 1 of the N photons.In this sequel, we focus on the application of the formalism to the calculation of on-shell amplitudes and cross sections. Universal formulas are obtained for the fully polarised matrix elements of the fermion propagator dressed with an arbitrary number of photons, as well as for the corresponding spin-averaged cross sections. A major simplification of the on-shell case is that the subleading terms drop out, but we also pinpoint other, less obvious simplifications.We use integration by parts to achieve manifest transversality of these amplitudes at the integrand level and exploit this property using the spinor helicity technique. We give a simple proof of the vanishing of the matrix element for “all +” photon helicities in the massless case, and find a novel relation between the scalar and spinor spin-averaged cross sections in the massive case. Testing the formalism on the standard linear Compton scattering process, we find that it reproduces the known results with remarkable efficiency. Further applications and generalisations are pointed out.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Tianyi Li ◽  
Ma-Ke Yuan ◽  
Yang Zhou

Abstract Defect extremal surface is defined by extremizing the Ryu-Takayanagi formula corrected by the quantum defect theory. This is interesting when the AdS bulk contains a defect brane (or string). We introduce a defect extremal surface formula for reflected entropy, which is a mixed state generalization of entanglement entropy measure. Based on a decomposition procedure of an AdS bulk with a brane, we demonstrate the equivalence between defect extremal surface formula and island formula for reflected entropy in AdS3/BCFT2. We also compute the evolution of reflected entropy in evaporating black hole model and find that defect extremal surface formula agrees with island formula.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We examine a common origin of four-dimensional flavor, CP, and U(1)R symmetries in the context of heterotic string theory with standard embedding. We find that flavor and U(1)R symmetries are unified into the Sp(2h + 2, ℂ) modular symmetries of Calabi-Yau threefolds with h being the number of moduli fields. Together with the $$ {\mathbb{Z}}_2^{\mathrm{CP}} $$ ℤ 2 CP CP symmetry, they are enhanced to GSp(2h + 2, ℂ) ≃ Sp(2h + 2, ℂ) ⋊ $$ {\mathbb{Z}}_2^{\mathrm{CP}} $$ ℤ 2 CP generalized symplectic modular symmetry. We exemplify the S3, S4, T′, S9 non-Abelian flavor symmetries on explicit toroidal orbifolds with and without resolutions and ℤ2, S4 flavor symmetries on three-parameter examples of Calabi-Yau threefolds. Thus, non-trivial flavor symmetries appear in not only the exact orbifold limit but also a certain class of Calabi-Yau three-folds. These flavor symmetries are further enlarged to non-Abelian discrete groups by the CP symmetry.


Sign in / Sign up

Export Citation Format

Share Document