scholarly journals Feynman–Kac Formulas for Dirichlet–Pauli–Fierz Operators with Singular Coefficients

2021 ◽  
Vol 93 (6) ◽  
Author(s):  
Oliver Matte
Author(s):  
Fernando Farroni ◽  
Luigi Greco ◽  
Gioconda Moscariello ◽  
Gabriella Zecca

AbstractWe consider a Cauchy–Dirichlet problem for a quasilinear second order parabolic equation with lower order term driven by a singular coefficient. We establish an existence result to such a problem and we describe the time behavior of the solution in the case of the infinite–time horizon.


Author(s):  
Rhonda J. Hughes ◽  
Paul R. Chernoff

AbstractWe show that the Kato conjecture is true for m-accretive operators with highly singular coefficients. For operators of the form A = *F, where formally corresponds to d/dx + zδ on L2 (R), we prove that Dom (A1/2) = Dom() = e-zHH1(R) where H is the Heavysied function. By adapting recent methods of Auscher and Tchamitchian, we characterize Dom (A) in terms of an unconditional wavelet basis for L2(R).


2018 ◽  
Vol 61 (8) ◽  
pp. 1353-1384 ◽  
Author(s):  
Xicheng Zhang

Author(s):  
T.G. Ergashev ◽  
A. Hasanov

In the present work, we investigate the Holmgren problem for an multidimensional elliptic equation with several singular coefficients. We use a fundamental solution of the equation, containing Lauricella’s hypergeometric function in many variables. Then using an «abc» method, the uniqueness for the solution of the Holmgren problem is proved. Applying a method of Green’s function, we are able to find the solution of the problem in an explicit form. Moreover, decomposition and summation formulae, formulae of differentiation and some adjacent relations for Lauricella’s hypergeometric functions in many variables were used in order to find the explicit solution for the formulated problem. В данной работе мы исследуем задачу Холмгрена для многомерного эллиптического уравнения с несколькими сингулярными коэффициентами. Мы используем фундаментальное решение уравнения, содержащее гипергеометрическую функцию Лауричеллы от многих переменных. Затем методом «abc» доказывается единственность решения проблемы Холмгрена. Применяя метод функции Грина, мы можем найти решение задачи в явном виде. Более того, формулы разложения и суммирования, формулы дифференцирования и некоторые смежные соотношения для гипергеометрических функций Лауричеллы от многих переменных были использованы для нахождения явного решения поставленной задачи.


Author(s):  
Бобоали Шарипов ◽  
Эраж Джумаев

Sign in / Sign up

Export Citation Format

Share Document