scholarly journals On the Generalized Hyers–Ulam Stability of a Functional Equation and Its Consequences

2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Krzysztof Ciepliński

AbstractThe aim of this note is to show the generalized Hyers–Ulam stability of a functional equation in four variables. In order to do this, the fixed point method is applied. As corollaries from our main result, some outcomes on the stability of some known equations will be also derived.

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Choonkil Park

Using fixed point method, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equationf(x+2y)+f(x−2y)=4f(x+y)+4f(x−y)−6f(x)+f(2y)+f(−2y)−4f(y)−4f(−y)in non-Archimedean Banach spaces.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Choonkil Park ◽  
Ji-Hye Kim

Lee, An and Park introduced the quadratic functional equationf(2x+y)+f(2x−y)=8f(x)+2f(y)and proved the stability of the quadratic functional equation in the spirit of Hyers, Ulam and Th. M. Rassias. Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation in Banach spaces.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4933-4944
Author(s):  
Dongseung Kang ◽  
Heejeong Koh

We obtain a general solution of the sextic functional equation f (ax+by)+ f (ax-by)+ f (bx+ay)+ f (bx-ay) = (ab)2(a2 + b2)[f(x+y)+f(x-y)] + 2(a2-b2)(a4-b4)[f(x)+f(y)] and investigate the stability of sextic Lie *-derivations associated with the given functional equation via fixed point method. Also, we present a counterexample for a single case.


2012 ◽  
Vol 2012 ◽  
pp. 1-45 ◽  
Author(s):  
Yeol Je Cho ◽  
Shin Min Kang ◽  
Reza Saadati

We prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equationf(x+2y)+f(x−2y)=4f(x+y)+4f(x−y)−6f(x)+f(2y)+f(−2y)−4f(y)−4f(−y)in various complete random normed spaces.


2013 ◽  
Vol 373-375 ◽  
pp. 1881-1884
Author(s):  
Xiao Jing Zhan ◽  
Pei Sheng Ji

In this paper, we investigate the Hyers-Ulam stability of the functional equation ƒ(2x+y)+ƒ(2x-y)=8ƒ(x)+2ƒ(y) in fuzzy Banach space using the fixed point method.


2008 ◽  
Vol 2008 ◽  
pp. 1-13 ◽  
Author(s):  
Fridoun Moradlou ◽  
Hamid Vaezi ◽  
Choonkil Park

Using the fixed point method, we prove the generalized Hyers-Ulam stability ofC∗-algebra homomorphisms and of generalized derivations onC∗-algebras for the following functional equation of Apollonius type∑i=1nf(z−xi)=−(1/n)∑1≤i<j≤nf(xi+xj)+nf(z−(1/n2)∑i=1nxi).


Sign in / Sign up

Export Citation Format

Share Document