Performance of Multiplierless FIR Filter Based on Directed Minimal Spanning Tree: A Comparative Study

2020 ◽  
Vol 39 (11) ◽  
pp. 5776-5800 ◽  
Author(s):  
N. Sajwan ◽  
I. Sharma ◽  
A. Kumar ◽  
L. K. Balyan
2009 ◽  
Vol 19 (01) ◽  
pp. 105-127 ◽  
Author(s):  
ANDREW ADAMATZKY

Plasmodium of Physarum polycephalum spans sources of nutrients and constructs varieties of protoplasmic networks during its foraging behavior. When the plasmodium is placed on a substrate populated with sources of nutrients, it spans the sources with protoplasmic network. The plasmodium optimizes the network to deliver efficiently the nutrients to all parts of its body. How exactly does the protoplasmic network unfold during the plasmodium's foraging behavior? What types of proximity graphs are approximated by the network? Does the plasmodium construct a minimal spanning tree first and then add additional protoplasmic veins to increase reliability and through-capacity of the network? We analyze a possibility that the plasmodium constructs a series of proximity graphs: nearest-neighbour graph (NNG), minimum spanning tree (MST), relative neighborhood graph (RNG), Gabriel graph (GG) and Delaunay triangulation (DT). The graphs can be arranged in the inclusion hierarchy (Toussaint hierarchy): NNG ⊆ MST ⊆ RNG ⊆ GG ⊆ DT . We aim to verify if graphs, where nodes are sources of nutrients and edges are protoplasmic tubes, appear in the development of the plasmodium in the order NNG → MST → RNG → GG → DT , corresponding to inclusion of the proximity graphs.


1982 ◽  
Vol 9 (4) ◽  
pp. 287-296 ◽  
Author(s):  
V. Aggarwal ◽  
Y.P. Aneja ◽  
K.P.K. Nair

Sign in / Sign up

Export Citation Format

Share Document