scholarly journals Approximations in $$L^1$$ with convergent Fourier series

Author(s):  
Zhirayr Avetisyan ◽  
Martin Grigoryan ◽  
Michael Ruzhansky

AbstractFor a separable finite diffuse measure space $${\mathcal {M}}$$ M and an orthonormal basis $$\{\varphi _n\}$$ { φ n } of $$L^2({\mathcal {M}})$$ L 2 ( M ) consisting of bounded functions $$\varphi _n\in L^\infty ({\mathcal {M}})$$ φ n ∈ L ∞ ( M ) , we find a measurable subset $$E\subset {\mathcal {M}}$$ E ⊂ M of arbitrarily small complement $$|{\mathcal {M}}{\setminus } E|<\epsilon $$ | M \ E | < ϵ , such that every measurable function $$f\in L^1({\mathcal {M}})$$ f ∈ L 1 ( M ) has an approximant $$g\in L^1({\mathcal {M}})$$ g ∈ L 1 ( M ) with $$g=f$$ g = f on E and the Fourier series of g converges to g, and a few further properties. The subset E is universal in the sense that it does not depend on the function f to be approximated. Further in the paper this result is adapted to the case of $${\mathcal {M}}=G/H$$ M = G / H being a homogeneous space of an infinite compact second countable Hausdorff group. As a useful illustration the case of n-spheres with spherical harmonics is discussed. The construction of the subset E and approximant g is sketched briefly at the end of the paper.

Author(s):  
Martin Grigoryan ◽  
Artavazd Maranjyan

For any countable set $D \subset [0,1]$, we construct a bounded measurable function $f$ such that the Fourier series of $f$ with respect to the regular general Haar system is divergent on $D$ and convergent on $[0,1]\backslash D$.


1963 ◽  
Vol 6 (2) ◽  
pp. 211-229 ◽  
Author(s):  
H. W. Ellis ◽  
D. O. Snow

It is well known that certain results such as the Radon-Nikodym Theorem, which are valid in totally σ -finite measure spaces, do not extend to measure spaces in which μ is not totally σ -finite. (See §2 for notation.) Given an arbitrary measure space (X, S, μ) and a signed measure ν on (X, S), then if ν ≪ μ for X, ν ≪ μ when restricted to any e ∊ Sf and the classical finite Radon-Nikodym theorem produces a measurable function ge(x), vanishing outside e, with


1972 ◽  
Vol 15 (2) ◽  
pp. 277-278
Author(s):  
C. Y. Shen

A simple but useful result in the measure theory for product spaces can be stated as follows:Theorem A. A necessary and sufficient condition that a measurable subset E of X×Y has measure zero is that almost every X-section (or almost every Y-section) has measure zero (see [1, §36]).We will show, in this short note, that a similar result also holds for the exponential of measure spaces. Before proceeding any further, we describe briefly here the exponential construction of a measure space.


1991 ◽  
Vol 118 (1-2) ◽  
pp. 111-118 ◽  
Author(s):  
Alan Lambert

SynopsisEach sigma-finite subalgebra from the sigma-algebra of a measure space induces a conditional expectation operator which acts on L2 as well as the set of almost everywhere nonnegative measurable functions. The concept of localising set is introduced and shown to be closely related to certain functional equations involving . Localising sets are shown to arise naturally in the study of weighted point transformations f→ϕ. f°T, where ϕ is a measurable function and T is a measurable self-map of the state space. A complete characterisation of localising sets related to such transformations is given when the underlying measure space is completely atomic.


1975 ◽  
Vol 78 (3) ◽  
pp. 461-469
Author(s):  
H. P. Rogosinski

In this paper we continue the investigation of positive-moment problems, begun in (4). For an arbitrary index set A we consider a family (fα)α ∈ A of measurable real-valued functions on a measure-space (X, µ). We suppose throughout thatwhere (Xm) is an increasing sequence of measurable subsets of X and where, for each α in A and each m, fα is µ-integrable over Xm. Let (сα)α ∈ A be a given family of real numbers. We consider the following restricted positive-moment problem: does there exist a measurable function g on X such that 0 ≤° g ≤° 1 and such thatfor every α in A? (Here the symbol ‘≤°’ indicates that the relation ≤ holds almost everywhere with respect to µ on X. Symbols ‘ = °, <°, …’ are used similarly.) If such a g exists we call (сα)α ∈ A a moment family for the problem:


2019 ◽  
Vol 27 (4) ◽  
pp. 591-607 ◽  
Author(s):  
Michael V. Klibanov

Abstract Numerical issues for the 3D travel time tomography problem with non-overdetemined data are considered. Truncated Fourier series with respect to a special orthonormal basis of functions depending on the source position is used. In addition, truncated trigonometric Fourier series with respect to two out of three spatial variables are used. First, the Lipschitz stability estimate is obtained. Next, a globally convergent numerical method is constructed using a Carleman estimate for an integral operator.


Sign in / Sign up

Export Citation Format

Share Document