About the Decay of Vorticity in a Two-dimensional Incompressible Viscous Fluid

2004 ◽  
Vol 69 (2) ◽  
Author(s):  
Brice Franke
2016 ◽  
Vol 12 (10) ◽  
pp. 6739-6750
Author(s):  
M. R Hedar ◽  
R. S Kamel

This paper presents the mathematical and computational formulations of the stochastic Vortex Blobs Method (VBM). It isshow that how the method can be used to cover axisymmetric flows of incompressible viscous fluid. Also, the initialboundary problem is solved by using the Lagrangian vortex method. This method seems to be an extension of the well known two dimensional vortex blob method. When applying and extending this method two steps are required. First, wehave to design an axisymmetric vorticity carrier by using the standard functions as complete elliptic integrals and Legendre polynomials. Second, it is necessary to formulate the appropriate Neumann problem and boundary integral equation to find the potential velocity fields. Both steps are used to describe and compute the total velocity field and formulate the Ito stochastic equations which describing the motion of vorticity carriers.


Author(s):  
Svetlana Sergeevna Vlasova ◽  
Eugenii Yurevich Prosviryakov

Найдено точное стационарное решение краевой задачи, описывающее конвективное движение вязкой несжимаемой жидкости в плоском слое при квадратичном нагреве свободной поверхности в приближение Стокса. Линеаризация уравнений Обербека-Буссинеска позволяет описать движение жидкости в точках экстремумов давления и температуры. Выведено условие, при котором наблюдается противотечение (два встречных потока) в жидкости. При наличии застойной точки в жидкости наблюдается шесть незамкнутых вихрей.


2013 ◽  
Vol 38 ◽  
pp. 61-73
Author(s):  
MA Haque

In this paper laminar flow of incompressible viscous fluid has been considered. Here two numerical methods for solving boundary layer equation have been discussed; (i) Keller Box scheme, (ii) Shooting Method. In Shooting Method, the boundary value problem has been converted into an equivalent initial value problem. Finally the Runge-Kutta method is used to solve the initial value problem. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16549 Rajshahi University J. of Sci. 38, 61-73 (2010)


Sign in / Sign up

Export Citation Format

Share Document