Vietnam Journal of Mechanics
Latest Publications


TOTAL DOCUMENTS

1063
(FIVE YEARS 78)

H-INDEX

6
(FIVE YEARS 1)

Published By "Publishing House For Science And Technology Vietnam, Vietnam Academy Of Science And Technology"

0866-7136, 0866-7136

Author(s):  
Nguyen Van My ◽  
Le Anh Tien ◽  
Phan Hoang Nam ◽  
Nguyen Quoc Khanh ◽  
Chau Van Than ◽  
...  

This study aims at numerically exploring the behavior of flow fields and nonlinear hydrodynamic coefficients of a horizontal cylinder beneath the free surface flow considering the effects of nonlinear surface waves and various cylinder shapes. The computational model is based on two-dimensional incompressible Navier-Stokes solvers along with the treatment of the free surface flow using the volume of fluid method. The effect of the turbulent flow is also considered by using the shear stress transport turbulence model. The simulation result of a benchmark case study of the submerged cylinder is first validated with available experiment data, where a mesh convergence analysis is also performed. Afterward, the flow fields and hydrodynamic force coefficients around the cylinder surface are analyzed, and the influences of various cylinder shapes and Reynolds numbers on the hydrodynamic coefficients are investigated. A state diagram representing the hydrodynamic behavior including stable and unstable stages is finally proposed; this is an important criterion for the practice design of submerged civil structures under the free surface flow.


2021 ◽  
Vol 43 (4) ◽  
pp. 389-405
Author(s):  
Nguyen Tien Khiem ◽  
Nguyen Minh Tuan ◽  
Pham Thi Ba Lien

The present paper deals with the concept of antiresonance in multiple cracked beams and application for multi-crack identification. First, governing equations for antiresonant frequency are conducted and used for both computing antiresonant frequencies versus crack parameters and measuring-loading colocation and identifying cracks by measured antiresonant frequencies. Then, a procedure is proposed for crack identification in cantilever beam by antiresonant frequencies based on the so-called crack scanning method. Theoretical development is illustrated by numerical examples.


Author(s):  
Hiep Xuan Trinh ◽  
Ngoc Bich Nguyen ◽  
Sinh Truong Nguyen

This paper presents the effect of water’s temperature on the friction properties of materials used in marine propeller sliding bearing. Copper-Rubber and Copper-Capron, two common pairs of material in the shaft water-lubricated polymer bearing were chosen to conduct experiments with the pin-on-disc model. Various conditions including water temperature, stress, and sliding velocity were examined, their results showed that in the range 30 °C to 100 °C of water temperature, the frictional coefficient of both friction pairs were unchanged under the small stress and low sliding velocity (0.3 MPa and 0.9 m/s). While in the case of stress and sliding velocity were both high (0.6 MPa and 1.5 m/s), it increased significantly in a certain transition temperature range. This temperature range of the pair Copper-Rubber and Copper-Capron is 50 °C to 60 °C and 80 °C to 90 °C, respectively. The experiment’s results also pointed out that in these transition temperature ranges, the friction coefficient of two pairs was slightly influenced by the change in sliding velocity, whereas the stress change has an important impact on its values. Nonetheless, when the water temperature was below the transition range, the effect of the stress change on the friction coefficient was not significant. Thus, high water temperature is the main reason for the friction coefficient’s increase rather than the increase of the stress. This work is expected to broaden the understanding of the friction behavior of the water-lubricated polymer bearing.


Author(s):  
Hoang Van Tung ◽  
Dao Nhu Mai ◽  
Vu Thanh Long

An analytical investigation on the nonlinear response of doubly curved panels constructed from homogeneous face sheets and carbon nanotube reinforced composite (CNTRC) core and subjected to external pressure in thermal environments is presented in this paper. Carbon nanotubes (CNTs) are reinforced into the core layer through uniform or functionally graded distributions. The properties of constituents are assumed to be temperature dependent and effective properties of CNTRC are determined using an extended rule of mixture. Governing equations are established within the framework of first order shear deformation theory taking into account geometrical imperfection, von Kármán–Donnell nonlinearity, panel-foundation interaction and elasticity of tangential edge restraints. These equations are solved using approximate analytical solutions and Galerkin method for simply supported panels. The results reveal that load carrying capacity of sandwich panels is stronger when boundary edges are more rigorously restrained and face sheets are thicker. Furthermore, elevated temperature has deteriorative and beneficial influences on the load bearing capability of sandwich panels with movable and restrained edges, respectively.


Author(s):  
Pham Chi Vinh ◽  
Do Xuan Tung ◽  
Nguyen Thi Kieu

This paper deals with the reflection and transmission of P-waves at a very rough interface between two isotropic elastic solids. The interface is assumed to oscillate between two straight lines. By mean of homogenization, this problem is reduced to the reflection and transmission of P-waves through an inhomogeneous orthotropic elastic layer. It is shown that a P incident wave always creates two reflected waves (one P wave and one SV wave), however, there may exist two, one or no transmitted waves. Expressions in closed-form of the reflection and transmission coefficient have been derived using the transfer matrix of an orthotropic elastic layer. Some numerical examples are carried out to examine the reflection and transmission of P-waves at a very rough interface of tooth-comb type, tooth-saw type and sin type. It is found numerically that the reflection and transmission coefficients depend strongly on the incident angle, the incident wave frequency, the roughness and the type of interfaces.


Author(s):  
Binh D. Pham ◽  
Truong V. Vu ◽  
Lien V. T. Nguyen ◽  
Cuong T. Nguyen ◽  
Hoe D. Nguyen ◽  
...  

In this study, the retraction and solidification of a fluid filament are studied by a front-tracking method/finite difference scheme. The interface between two phases is handled by connected points (Lagrangian grid), which move on a fixed grid domain (Eulerian grid). The Navier-Stokes and energy equations are solved to simulate the problem. Initially, the fluid filament has a shape as half of a cylindrical capsule contact with a cold flat surface. We consider the effect of the aspect ratio (Ar) on the solidification of the fluid filament. It is found that an increase in the aspect ratio (Ar) in the range of 2 – 14 causes the retraction length to increase. The rate of the solidification of a fluid filament decreases when the Ar ratio increases. The solidification time, the solidification height and the tip angle of the fluid filament under the influence of the aspect ratio are also considered. After complete solidification, a small protrusion on the top of the solidified fluid filament is found.


Author(s):  
Minh Nguyen ◽  
Tinh Quoc Bui ◽  
Vay Siu Lo ◽  
Nha Thanh Nguyen

This work aims at presenting a novel four-node quadrilateral element, which is enhanced by integrating with discrete shear gap (DSG), for analysis of Reissner-Mindlin plates. In contrast to previous studies that are mainly based on three-node triangular elements, here we, for the first time, extend the DSG to four-node quadrilateral elements. We further integrate the fictitious point located at the center of element into the present formulation to eliminate the so-called anisotropy, leading to a simplified and efficient calculation of DSG, and that enhancement results in a novel approach named as "four-node quadrilateral element with center-point based discrete shear gap - CP-DSG4". The accuracy and efficiency of the CP-DSG4 are demonstrated through our numerical experiment, and its computed results are validated against those derived from the three-node triangular element using DSG, and other existing reference solutions.


2021 ◽  
Vol 43 (3) ◽  
pp. 265-276
Author(s):  
Quoc Hung Nguyen ◽  
Bao Tri Diep ◽  
Duy Hung Nguyen ◽  
Van Bien Nguyen ◽  
Van Bo Vu ◽  
...  

In this research, we focus on development of a new configuration of magneto-rheological fluid (MRF) based clutch (MRC) featuring a tooth-shaped disc with multiple teeth acting as multiple magnetic poles of the clutch. The tooth-shaped disc is placed in a clutch housing composed of the left housing and the right housing. The inner face the housing also has tooth shaped features mating with the teeth of the disc through the working MRF. Excitation coils are placed directly on stationary winding cores placed on both side of the clutch housing. An air gap of 0.3 mm is left between the housing and the winding cores to ensure the housing can freely rotate against the winding cores. After the introductory part, configuration of the MRC is introduced and the transmitted torque of the MRC is derived. An optimization process to minimize the overall volume of the proposed clutch, which can generate a required maximum braking torque, is then conducted. The optimal results show that the overall volume of the proposed MRC is significantly reduced compared to a referenced conventional MRC (0.159 m3 vs. 0.295 m3). A prototype of the proposed MRC is fabricated for experimental works and good agreement between the experimental results and simulated ones is archived.


Author(s):  
Hoang Van Tung ◽  
Pham Thanh Hieu

This paper presents an analytical approach to investigate the buckling of sandwich cylindrical shells subjected to uniform temperature rise and external lateral pressure. Two sandwich models corresponding to carbon nanotube reinforced composite (CNTRC) face sheets and core layer are considered. The properties of all constitutive materials are assumed to be temperature dependent and effective properties of CNTRC are determined according to an extended rule of mixture. Governing equations are established using first order shear deformation theory and solved employing two-term form of deflection along with Galerkin method for simply supported edge shells. In order to account for practical situations of in-plane boundary condition, the elasticity of tangential constraint of boundary edges is included. Owing to temperature dependence of material properties, critical thermal loads are determined adopting an iteration process. Numerous parametric studies are carried out and interesting remarks are given. The study reveals that sandwich shell model with CNTRC core layer and homogeneous skins has considerably strong capacity of buckling resistance. Numerical results also indicate that tangential edge constraint has significant effects on critical loads, especially at elevated temperature. In addition, in the case of thermal load, an intermediate volume percentage of carbon nanotubes can confer the highest critical temperatures of sandwich shells.


Author(s):  
Tran Trung Thanh ◽  
Tran Van Ke ◽  
Pham Quoc Hoa ◽  
Tran The Van ◽  
Nguyen Thoi Trung

The paper aims to extend the ES-MITC3 element, which is an integration of the edge-based smoothed finite element method (ES-FEM) with the mixed interpolation of tensorial components technique for the three-node triangular element (MITC3 element), for the buckling analysis of the FGM variable-thickness plates subjected to mechanical loads. The proposed ES-MITC3 element is performed to eliminate the shear locking phenomenon and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing the same edge. The numerical results demonstrated that the proposed method is reliable and more accurate than some other published solutions in the literature. The influences of some geometric parameters, material properties on the stability of FGM variable-thickness plates are examined in detail.


Sign in / Sign up

Export Citation Format

Share Document