Hyperbolic Stochastic Differential Equations: Absolute Continuity of the Law of the Solution at a Fixed Point

1996 ◽  
Vol 33 (3) ◽  
pp. 293-313
2020 ◽  
Vol 52 (2) ◽  
pp. 523-562
Author(s):  
Phillippe Briand ◽  
Abir Ghannoum ◽  
Céline Labart

AbstractIn this paper, a reflected stochastic differential equation (SDE) with jumps is studied for the case where the constraint acts on the law of the solution rather than on its paths. These reflected SDEs have been approximated by Briand et al. (2016) using a numerical scheme based on particles systems, when no jumps occur. The main contribution of this paper is to prove the existence and the uniqueness of the solutions to this kind of reflected SDE with jumps and to generalize the results obtained by Briand et al. (2016) to this context.


2019 ◽  
Vol 20 (01) ◽  
pp. 2050003
Author(s):  
Xiao Ma ◽  
Xiao-Bao Shu ◽  
Jianzhong Mao

In this paper, we investigate the existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay in Hilbert space. The main conclusion is obtained by using fractional calculus, operator semigroup and fixed point theorem. In the end, we give an example to illustrate our main results.


1997 ◽  
Vol 143 (1) ◽  
pp. 157-179 ◽  
Author(s):  
Carles Rovira ◽  
Marta Sanz-Solé

2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Jie Miao ◽  
Xu Yang

We study more general backward stochastic differential equations driven by multidimensional fractional Brownian motions. Introducing the concept of the multidimensional fractional (or quasi-) conditional expectation, we study some of its properties. Using the quasi-conditional expectation and multidimensional fractional Itô formula, we obtain the existence and uniqueness of the solutions to BSDEs driven by multidimensional fractional Brownian motions, where a fixed point principle is employed. Finally, solutions to linear fractional backward stochastic differential equations are investigated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sliman Mekki ◽  
Tayeb Blouhi ◽  
Juan J. Nieto ◽  
Abdelghani Ouahab

Abstract In this paper we study a class of impulsive systems of stochastic differential equations with infinite Brownian motions. Sufficient conditions for the existence and uniqueness of solutions are established by mean of some fixed point theorems in vector Banach spaces. An example is provided to illustrate the theory.


Sign in / Sign up

Export Citation Format

Share Document