existence and uniqueness
Recently Published Documents


TOTAL DOCUMENTS

5107
(FIVE YEARS 1272)

H-INDEX

71
(FIVE YEARS 11)

2022 ◽  
Vol 40 ◽  
pp. 1-9
Author(s):  
Hojat Afshari ◽  
L. Khoshvaghti

In this paper we consider the existence and uniqueness of positive solutions to the following operator equation in an ordered Banach space $E$$$A(x,x)+B(x,x)=x,~x\in P,$$where $P$ is a cone in $E$. We study an application for fractional differential equations.


2022 ◽  
pp. 108128652110731
Author(s):  
Victor A Eremeyev ◽  
Leonid P Lebedev ◽  
Violetta Konopińska-Zmysłowska

The problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with inclusions are considered. The weak setup of the problem is formulated and studied. It is proved a theorem of existence and uniqueness of a weak solution for the problem under consideration.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Jun Moon

AbstractWe consider the optimal control problem for stochastic differential equations (SDEs) with random coefficients under the recursive-type objective functional captured by the backward SDE (BSDE). Due to the random coefficients, the associated Hamilton–Jacobi–Bellman (HJB) equation is a class of second-order stochastic PDEs (SPDEs) driven by Brownian motion, which we call the stochastic HJB (SHJB) equation. In addition, as we adopt the recursive-type objective functional, the drift term of the SHJB equation depends on the second component of its solution. These two generalizations cause several technical intricacies, which do not appear in the existing literature. We prove the dynamic programming principle (DPP) for the value function, for which unlike the existing literature we have to use the backward semigroup associated with the recursive-type objective functional. By the DPP, we are able to show the continuity of the value function. Using the Itô–Kunita’s formula, we prove the verification theorem, which constitutes a sufficient condition for optimality and characterizes the value function, provided that the smooth (classical) solution of the SHJB equation exists. In general, the smooth solution of the SHJB equation may not exist. Hence, we study the existence and uniqueness of the solution to the SHJB equation under two different weak solution concepts. First, we show, under appropriate assumptions, the existence and uniqueness of the weak solution via the Sobolev space technique, which requires converting the SHJB equation to a class of backward stochastic evolution equations. The second result is obtained under the notion of viscosity solutions, which is an extension of the classical one to the case for SPDEs. Using the DPP and the estimates of BSDEs, we prove that the value function is the viscosity solution to the SHJB equation. For applications, we consider the linear-quadratic problem, the utility maximization problem, and the European option pricing problem. Specifically, different from the existing literature, each problem is formulated by the generalized recursive-type objective functional and is subject to random coefficients. By applying the theoretical results of this paper, we obtain the explicit optimal solution for each problem in terms of the solution of the corresponding SHJB equation.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Hongyan Guan ◽  
Jianju Li ◽  
Yan Hao

In this manuscript, two new classes of generalized weakly contractions are introduced and common fixed point results concerning the new contractions are proved in the context of rectangular b -metric spaces. Also, some examples are included to present the validity of our theorems. As an application, we provide the existence and uniqueness of solution of an integral equation.


2022 ◽  
Author(s):  
Abdallah Beddani ◽  
Rahma Sahraoui

Abstract Our aim is to calculate the discrete approximate solution of di⁄erential inclusion with normal cone and prox-regular set, the question is how to calculate this solution? We use the discrete approximation property of a new variant of nonconvex sweeping processes involving normal cone and a nite element method. Knowing that The majority of mathematicians have proved only the existence and uniqueness of the solution for this type of inclusions, like: Mordukhovich, Thibault, Aubin, Messaoud,
...etc.


Sign in / Sign up

Export Citation Format

Share Document