scholarly journals Assessing local and spatial uncertainty with nonparametric geostatistics

Author(s):  
Stephanie Thiesen ◽  
Uwe Ehret

AbstractUncertainty quantification is an important topic for many environmental studies, such as identifying zones where potentially toxic materials exist in the soil. In this work, the nonparametric geostatistical framework of histogram via entropy reduction (HER) is adapted to address local and spatial uncertainty in the context of risk of soil contamination. HER works with empirical probability distributions, coupling information theory and probability aggregation methods to estimate conditional distributions, which gives it the flexibility to be tailored for different data and application purposes. To explore how HER can be used for estimating threshold-exceeding probabilities, it is applied to map the risk of soil contamination by lead in the well-known dataset of the region of Swiss Jura. Its results are compared to indicator kriging (IK) and to an ordinary kriging (OK) model available in the literature. For the analyzed dataset, IK and HER predictions achieve the best performance and exhibit comparable accuracy and precision. Compared to IK, advantages of HER for uncertainty estimation in a fine resolution are that it does not require modeling of multiple indicator variograms, correcting order-relation violations, or defining interpolation/extrapolation of distributions. Finally, to avoid the well-known smoothing effect when using point estimations (as is the case with both kriging and HER), and to provide maps that reflect the spatial fluctuation of the observed reality, we demonstrate how HER can be used in combination with sequential simulation to assess spatial uncertainty (uncertainty jointly over several locations).

2021 ◽  
Author(s):  
Stephanie Thiesen ◽  
Uwe Ehret

Abstract Uncertainty quantification is an important topic for many environmental studies, such as identifying zones where potentially toxic materials exist in the soil. In this work, the nonparametric geostatistical framework of histogram via entropy reduction (HER) is adapted to address local and spatial uncertainty in the context of risk of soil contamination. HER works with empirical probability distributions, coupling information theory and probability aggregation methods to estimate conditional distributions, which gives it the flexibility to be tailored for different data and application purposes. To explore the method adaptation for handling estimations of threshold-exceeding probabilities, it is used to map the risk of soil contamination by lead in the well-known dataset of the region of Swiss Jura. Its results are compared to indicator kriging (IK) and to an ordinary kriging (OK) model available in literature. For the analyzed dataset, IK and HER achieved the best performance and exhibited comparable accuracy and precision of their predictions. When compared to IK, HER has shown to be a unique approach for dealing with uncertainty estimation in a fine resolution, without the need of modeling multiple indicator variograms, correcting order-relation violations, or defining interpolation/extrapolation of distribution. Finally, to avoid the well-known smoothing effect when using point estimations (this is the case with kriging, but also with HER) and to provide maps that reflect the spatial fluctuation of the revealed reality, we demonstrate how HER can be used in combination with sequential simulation to assess spatial uncertainty (uncertainty jointly over several locations).


2021 ◽  
Author(s):  
Stephanie Thiesen ◽  
Uwe Ehret

<p>Uncertainty analysis is a critical subject for many environmental studies. We have previously combined statistical learning and Information Theory in a geostatistical framework for overcoming parameterization with functions and uncertainty trade-offs present in many traditional interpolators (Thiesen et al. 2020). The so-called Histogram via entropy reduction (HER) relaxes normality assumptions, avoiding the risk of adding information not available in the data. The authors showed that, by construction, the method provides a proper framework for uncertainty estimation which accounts for both spatial configuration and data values, while allowing one to introduce or infer properties of the field through the aggregation method. In this study, we explore HER method in the light of uncertainty analysis. In general, uncertainty at any particular unsampled location (local uncertainty) is frequently assessed by nonlinear interpolators such as indicator and multi-gaussian kriging. HER has shown to be a unique approach for dealing with uncertainty estimation in a fine resolution without the need of modeling multiple indicator semivariograms, order-relation violations, interpolation/extrapolation of conditional cumulative distribution functions, or stronger hypotheses of data distribution. In this work, this nonparametric geostatistical framework is adapted to address local and spatial uncertainty in the context of risk mapping. We investigate HER for handling estimations of threshold-exceeding probabilities to map the risk of soil contamination by lead in the well-known dataset of the region of Swiss Jura. Finally, HER method is extended to assess spatial uncertainty (uncertainty when several locations are considered together) through sequential simulation. Its results are compared to indicator kriging and benchmark models available in the literature generated for this particular dataset.</p><p>Thiesen S, Vieira DM, Mälicke M, Loritz R, Wellmann JF, Ehret U (2020) Histogram via entropy reduction (HER): an information-theoretic alternative for geostatistics. Hydrol Earth Syst Sci 24:4523–4540. https://doi.org/https://doi.org/10.5194/hess-24-4523-2020</p>


2019 ◽  
Vol 200 ◽  
pp. 13-26 ◽  
Author(s):  
Mahyadin Mohammadpour ◽  
Abbas Bahroudi ◽  
Maysam Abedi ◽  
Gholamreza Rahimipour ◽  
Golnaz Jozanikohan ◽  
...  

2004 ◽  
Vol 113 (4) ◽  
pp. 249-259 ◽  
Author(s):  
Xavier Emery ◽  
Julián M. Ortiz

Geoderma ◽  
2017 ◽  
Vol 306 ◽  
pp. 108-119 ◽  
Author(s):  
S. Chakraborty ◽  
T. Man ◽  
L. Paulette ◽  
S. Deb ◽  
B. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document