Application of multiple indicator Kriging for RMR value estimation in areas of new drift excavation during mine site redevelopment

2013 ◽  
Vol 71 (10) ◽  
pp. 4379-4386 ◽  
Author(s):  
Huiuk Yi ◽  
Yosoon Choi ◽  
Hyeong-Dong Park
2019 ◽  
Vol 200 ◽  
pp. 13-26 ◽  
Author(s):  
Mahyadin Mohammadpour ◽  
Abbas Bahroudi ◽  
Maysam Abedi ◽  
Gholamreza Rahimipour ◽  
Golnaz Jozanikohan ◽  
...  

2004 ◽  
Vol 113 (4) ◽  
pp. 249-259 ◽  
Author(s):  
Xavier Emery ◽  
Julián M. Ortiz

2021 ◽  
Author(s):  
Stephanie Thiesen ◽  
Uwe Ehret

Abstract Uncertainty quantification is an important topic for many environmental studies, such as identifying zones where potentially toxic materials exist in the soil. In this work, the nonparametric geostatistical framework of histogram via entropy reduction (HER) is adapted to address local and spatial uncertainty in the context of risk of soil contamination. HER works with empirical probability distributions, coupling information theory and probability aggregation methods to estimate conditional distributions, which gives it the flexibility to be tailored for different data and application purposes. To explore the method adaptation for handling estimations of threshold-exceeding probabilities, it is used to map the risk of soil contamination by lead in the well-known dataset of the region of Swiss Jura. Its results are compared to indicator kriging (IK) and to an ordinary kriging (OK) model available in literature. For the analyzed dataset, IK and HER achieved the best performance and exhibited comparable accuracy and precision of their predictions. When compared to IK, HER has shown to be a unique approach for dealing with uncertainty estimation in a fine resolution, without the need of modeling multiple indicator variograms, correcting order-relation violations, or defining interpolation/extrapolation of distribution. Finally, to avoid the well-known smoothing effect when using point estimations (this is the case with kriging, but also with HER) and to provide maps that reflect the spatial fluctuation of the revealed reality, we demonstrate how HER can be used in combination with sequential simulation to assess spatial uncertainty (uncertainty jointly over several locations).


Author(s):  
J. Jaime Gómez-Hernández ◽  
R. Mohan Srivastava

AbstractIn the mid-1980s, still in his young 40s, André Journel was already recognized as one of the giants of geostatistics. Many of the contributions from his new research program at Stanford University had centered around the indicator methods that he developed: indicator kriging and multiple indicator kriging. But when his second crop of graduate students arrived at Stanford, indicator methods still lacked an approach to conditional simulation that was not tainted by what André called the ‘Gaussian disease’; early indicator simulations went through the tortuous path of converting all indicators to Gaussian variables, running a turning bands simulation, and truncating the resulting multi-Gaussian realizations. When he conceived of sequential indicator simulation (SIS), even André likely did not recognize the generality of an approach to simulation that tackled the simulation task one step at a time. The early enthusiasm for SIS was its ability, in its multiple-indicator form, to cure the Gaussian disease and to build realizations in which spatial continuity did not deteriorate in the extreme values. Much of Stanford’s work in the 1980s focused on petroleum geostatistics, where extreme values (the high-permeability fracture zones and the low-permeability shale barriers) have much stronger anisotropy, and much longer ranges of correlation in the maximum continuity direction, than mid-range values. With multi-Gaussian simulations necessarily imparting weaker continuity to the extremes, SIS was an important breakthrough. The generality of the sequential approach was soon recognized, first through its analogy with multi-variate unconditional simulation achieved using the lower triangular matrix of an LU decomposition of the covariance matrix as the multiplier of random normal deviates. Modifying LU simulation so that it became conditional gave rise to sequential Gaussian simulation (SGS), an algorithm that shared much in common with SIS. With nagging implementation details like the sequential path and the search neighborhood being common to both methods, improvements in either SIS or SGS often became improvements to the other. Almost half of the contributors to this Special Issue became students of André in the classes of 1984–1988, and several are the pioneers of SIS and SGS. Others who studied later with André explored and developed the first multipoint statistics simulation procedures, which are based on the same concept that underlies sequential simulation. Among his many significant intellectual accomplishments, one of the cornerstones of André Journel’s legacy was sequential simulation, built one step at a time.


Sign in / Sign up

Export Citation Format

Share Document