Partial regularity for variational integrals with $(s,\mu ,q)$ -Growth

2001 ◽  
Vol 13 (4) ◽  
pp. 537-560 ◽  
Author(s):  
Michael Bildhauer ◽  
Martin Fuchs
1987 ◽  
Vol 25 (1-2) ◽  
pp. 221-229 ◽  
Author(s):  
Mariano Giaquinta ◽  
Per-Anders Ivert

Author(s):  
Mathias Schäffner

AbstractWe consider autonomous integral functionals of the form $$\begin{aligned} {\mathcal {F}}[u]:=\int _\varOmega f(D u)\,dx \quad \text{ where } u:\varOmega \rightarrow {\mathbb {R}}^N, N\ge 1, \end{aligned}$$ F [ u ] : = ∫ Ω f ( D u ) d x where u : Ω → R N , N ≥ 1 , where the convex integrand f satisfies controlled (p, q)-growth conditions. We establish higher gradient integrability and partial regularity for minimizers of $${\mathcal {F}}$$ F assuming $$\frac{q}{p}<1+\frac{2}{n-1}$$ q p < 1 + 2 n - 1 , $$n\ge 3$$ n ≥ 3 . This improves earlier results valid under the more restrictive assumption $$\frac{q}{p}<1+\frac{2}{n}$$ q p < 1 + 2 n .


Sign in / Sign up

Export Citation Format

Share Document