Calculus of Variations and Partial Differential Equations
Latest Publications


TOTAL DOCUMENTS

2673
(FIVE YEARS 658)

H-INDEX

60
(FIVE YEARS 7)

Published By Springer-Verlag

1432-0835, 0944-2669

Author(s):  
Juha Kinnunen ◽  
Christoph Scheven

AbstractWe show that the notions of weak solution to the total variation flow based on the Anzellotti pairing and the variational inequality coincide under some restrictions on the boundary data. The key ingredient in the argument is a duality result for the total variation functional, which is based on an approximation of the total variation by area-type functionals.


Author(s):  
Pak Tung Ho ◽  
Jinwoo Shin

AbstractAs a generalization of the Yamabe problem, Hebey and Vaugon considered the equivariant Yamabe problem: for a subgroup G of the isometry group, find a G-invariant metric whose scalar curvature is constant in a given conformal class. In this paper, we study the equivariant Yamabe problem with boundary.


Author(s):  
David P. Bourne ◽  
Charlie P. Egan ◽  
Beatrice Pelloni ◽  
Mark Wilkinson

AbstractWe give a new and constructive proof of the existence of global-in-time weak solutions of the 3-dimensional incompressible semi-geostrophic equations (SG) in geostrophic coordinates, for arbitrary initial measures with compact support. This new proof, based on semi-discrete optimal transport techniques, works by characterising discrete solutions of SG in geostrophic coordinates in terms of trajectories satisfying an ordinary differential equation. It is advantageous in its simplicity and its explicit relation to Eulerian coordinates through the use of Laguerre tessellations. Using our method, we obtain improved time-regularity for a large class of discrete initial measures, and we compute explicitly two discrete solutions. The method naturally gives rise to an efficient numerical method, which we illustrate by presenting simulations of a 2-dimensional semi-geostrophic flow in geostrophic coordinates generated using a numerical solver for the semi-discrete optimal transport problem coupled with an ordinary differential equation solver.


Author(s):  
Tim Laux ◽  
Jona Lelmi

AbstractWe provide a new convergence proof of the celebrated Merriman–Bence–Osher scheme for multiphase mean curvature flow. Our proof applies to the new variant incorporating a general class of surface tensions and mobilities, including typical choices for modeling grain growth. The basis of the proof are the minimizing movements interpretation of Esedoḡlu and Otto and De Giorgi’s general theory of gradient flows. Under a typical energy convergence assumption we show that the limit satisfies a sharp energy-dissipation relation.


Author(s):  
Lev Lokutsievskiy ◽  
Gerd Wachsmuth ◽  
Mikhail Zelikin

AbstractWe consider Newton’s problem of minimal resistance, in particular we address the problem arising in the limit if the height goes to infinity. We establish existence of solutions and lack radial symmetry of solutions. Moreover, we show that certain conical parts contained in the boundary of a convex body inhibit the optimality in the classical Newton’s problem with finite height. This result is applied to certain bodies considered in the literature, which are conjectured to be optimal for the classical Newton’s problem, and we show that they are not.


Sign in / Sign up

Export Citation Format

Share Document