Strong Approximation Theorems for Sums of Random Variables when Extreme Terms are Excluded

2002 ◽  
Vol 18 (2) ◽  
pp. 311-326 ◽  
Author(s):  
Li Xin Zhang
1980 ◽  
Vol 12 (3) ◽  
pp. 727-745 ◽  
Author(s):  
D. P. Gaver ◽  
P. A. W. Lewis

It is shown that there is an innovation process {∊n} such that the sequence of random variables {Xn} generated by the linear, additive first-order autoregressive scheme Xn = pXn-1 + ∊n are marginally distributed as gamma (λ, k) variables if 0 ≦p ≦ 1. This first-order autoregressive gamma sequence is useful for modelling a wide range of observed phenomena. Properties of sums of random variables from this process are studied, as well as Laplace-Stieltjes transforms of adjacent variables and joint moments of variables with different separations. The process is not time-reversible and has a zero-defect which makes parameter estimation straightforward. Other positive-valued variables generated by the first-order autoregressive scheme are studied, as well as extensions of the scheme for generating sequences with given marginal distributions and negative serial correlations.


1980 ◽  
Vol 12 (03) ◽  
pp. 727-745 ◽  
Author(s):  
D. P. Gaver ◽  
P. A. W. Lewis

It is shown that there is an innovation process {∊ n } such that the sequence of random variables {X n } generated by the linear, additive first-order autoregressive scheme X n = pXn-1 + ∊ n are marginally distributed as gamma (λ, k) variables if 0 ≦p ≦ 1. This first-order autoregressive gamma sequence is useful for modelling a wide range of observed phenomena. Properties of sums of random variables from this process are studied, as well as Laplace-Stieltjes transforms of adjacent variables and joint moments of variables with different separations. The process is not time-reversible and has a zero-defect which makes parameter estimation straightforward. Other positive-valued variables generated by the first-order autoregressive scheme are studied, as well as extensions of the scheme for generating sequences with given marginal distributions and negative serial correlations.


Sign in / Sign up

Export Citation Format

Share Document