Local regularity for concave homogeneous complex degenerate elliptic equations dominating the Monge–Ampère equation
AbstractIn this paper, we establish a local regularity result for $$W^{2,p}_{{\mathrm {loc}}}$$ W loc 2 , p solutions to complex degenerate nonlinear elliptic equations $$F(D^2_{\mathbb {C}}u)=f$$ F ( D C 2 u ) = f when they dominate the Monge–Ampère equation. Notably, we apply our result to the so-called k-Monge–Ampère equation.