The rank of a commutative cancellative semigroup

2005 ◽  
Vol 107 (1-2) ◽  
pp. 71-75 ◽  
Author(s):  
Mario Petrich
1971 ◽  
Vol 12 (2) ◽  
pp. 187-192
Author(s):  
Charles V. Heuer

In [1] D. W. Miller and the author established necessary and sufficient conditions for the existence of a cancellative (ideal) extension of a commutative cancellative semigroup by a cyclic group with zero. The purpose of this paper is to extend these results to cancellative extensions by any finitely generated Abelian group with zero and to establish in this general case conditions under which two such extensions are equivalent.


1988 ◽  
Vol 117 (2) ◽  
pp. 290-296 ◽  
Author(s):  
J Okninski ◽  
F Van Oystaeyen

Author(s):  
E. Jespers

AbstractThe following questions are studied: When is a semigroup graded ring left Noetherian, respectively semiprime left Goldie? Necessary sufficient conditions are proved for cancellative semigroup-graded subrings of rings weakly or strongly graded by a polycyclic-by-finite (unique product) group. For semigroup rings R[S] we also give a solution to the problem in case S is an inverse semigroup.


Author(s):  
Radosław Łukasik

AbstractLet X be a Banach space. Fix a torsion-free commutative and cancellative semigroup S whose torsion-free rank is the same as the density of $$X^{**}$$ X ∗ ∗ . We then show that X is complemented in $$X^{**}$$ X ∗ ∗ if and only if there exists an invariant mean $$M:\ell _\infty (S,X)\rightarrow X$$ M : ℓ ∞ ( S , X ) → X . This improves upon previous results due to Bustos Domecq (J Math Anal Appl 275(2):512–520, 2002), Kania (J Math Anal Appl 445:797–802, 2017), Goucher and Kania (Studia Math 260:91–101, 2021).


1994 ◽  
Vol 49 (1) ◽  
pp. 165-170 ◽  
Author(s):  
Jan Okninski

The Jacobson radical J(K[S]) of the semigroup ring K[S] of a cancellative semigroup S over a field K is studied. We show that, if J(K[S]) ≠ 0, then either S is a reversive semigroup or K[S] has many nilpotents and J(K[P]) ≠ 0 for a reversive subsemigroup P of S. This is used to prove that J(K[S]) = 0 for every unique product. semigroup S.


1993 ◽  
Vol 35 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jan Okniński

Let S be a cancellative semigroup. This paper is motivated by the problem of finding a description of semigroup rings K[S] over a field K that are semiprime or prime. Results of this type are well-known in the case of a group ring K[G], cf. [8]. The description, as well as the proofs, involve the FC-centre of G defined as the subset of all elements with finitely many conjugates in G. In [4], [5] Krempa extended the FC-centre techniques to the case of an arbitrary cancellative semigroup S. He defined a subsemigroup Δ(S) of S which coincides with the FC-centre in the case of groups, and can be used to describe the centre and to study special elements of K[S]. His results were strengthened by the author in [7], where Δ(S) was also applied in the context of prime and semiprime algebras K[S]. However, Δ(S) itself is not sufficient to characterize semigroup rings of this type. We note that in [2], [3] Dauns developed a similar idea for a study of the centre of semigroup rings and certain of their generalizations.


1987 ◽  
Vol 15 (8) ◽  
pp. 1667-1677 ◽  
Author(s):  
Jan Okniński

2014 ◽  
Vol 57 (2) ◽  
pp. 533-564 ◽  
Author(s):  
Magnus Dahler Norling

AbstractTo each discrete left cancellative semigroup S one may associate an inverse semigroup Il(S), often called the left inverse hull of S. We show how the full and reduced C*-algebras of Il(S) are related to the full and reduced semigroup C*-algebras for S, recently introduced by Li, and give conditions ensuring that these algebras are isomorphic. Our picture provides an enhanced understanding of Li's algebras.


1985 ◽  
Vol 26 (2) ◽  
pp. 107-113 ◽  
Author(s):  
E. Jespers ◽  
J. Krempa ◽  
P. Wauters

We give a complete description of the Brown–McCoy radical of a semigroup ring R[S], where R is an arbitrary associative ring and S is a commutative cancellative semigroup; in particular we obtain the answer to a question of E. Puczyłowski stated in [11]Throughout this note all rings R are associative with unity 1; all semigroups S are commutative and cancellative with unity. Note that the condition that R and S have a unity can be dropped (cf. [8]). The quotient group of S is denoted by Q(S). We say that S is torsion free (resp. has torsion free rank n) if Q(S) is torsion free (resp. has torsion free rank n). The Brown–McCoy radical (i.e. the upper radical determined by the class of all simple rings with unity) of a ring R is denoted by u(R). We refer to [2] for further detail on radicals and in particular on the Brown–McCoy radical.First we state some well-known results and a preliminary lemma. Let R and T be rings with the same unity such that R ⊂ T. Then T is said to be a normalizing extension of R if T = Rx1+…+Rxn for certain elements x1, …, xn of T and Rxi = xiR for all i such that 1 ∨i∨n. If all xi are central in T, then we say that T is a central normalizing extension of R.


Sign in / Sign up

Export Citation Format

Share Document