scholarly journals On the convergence of multiple Fourier series of functions of bounded partial generalized variation

2013 ◽  
Vol 39 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Ushangi Goginava ◽  
Artur Sahakian
2018 ◽  
Vol 25 (3) ◽  
pp. 481-491
Author(s):  
Rajendra G. Vyas

AbstractIn this paper, we obtain sufficiency conditions for generalized β-absolute convergence ({0<\beta\leq 2}) of single and multiple Fourier series of functions of the class {\Lambda\text{-}\mathrm{BV}(p(n)\uparrow\infty,\varphi,[-\pi,\pi])} and the class {(\Lambda^{1},\Lambda^{2},\dots,\Lambda^{N})\text{-}\mathrm{BV}(p(n)\uparrow% \infty,\varphi,[-\pi,\pi]^{N})}, respectively.


2020 ◽  
Vol 27 (2) ◽  
pp. 321-330
Author(s):  
Vakhtang Tsagareishvili

AbstractIn this paper, we investigate the absolute convergence of Fourier series of functions in several variables for an odd-dimensional space when these functions have continuous partial derivatives. It should be noted that similar properties for an even-dimensional space were given in [L. D. Gogoladze and V. S. Tsagareishvili, On absolute convergence of multiple Fourier series (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 2015, 9, 12–21; translation in Russian Math. (Iz. VUZ) 59 (2015), no. 9, 9–17]. The obtained results are the best possible in a certain sense.


Sign in / Sign up

Export Citation Format

Share Document