The Absolute
Recently Published Documents





2021 ◽  
Vol 3 ◽  
Yuto Miyake ◽  
Tadashi Suga ◽  
Masafumi Terada ◽  
Takahiro Tanaka ◽  
Hiromasa Ueno ◽  

The plantar flexor torque plays an important role in achieving superior sprint performance in sprinters. Because of the close relationship between joint torque and muscle size, a simple assumption can be made that greater plantar flexor muscles (i.e., triceps surae muscles) are related to better sprint performance. However, previous studies have reported the absence of these relationships. Furthermore, to examine these relationships, only a few studies have calculated the muscle volume (MV) of the plantar flexors. In this study, we hypothesized that the plantar flexor MVs may not be important morphological factors for sprint performance. To test our hypothesis, we examined the relationships between plantar flexor MVs and sprint performance in sprinters. Fifty-two male sprinters and 26 body size-matched male non-sprinters participated in this study. On the basis of the personal best 100 m sprint times [range, 10.21–11.90 (mean ± SD, 11.13 ± 0.42) s] in sprinters, a K-means cluster analysis was applied to divide them into four sprint performance level groups (n = 8, 8, 19, and 17 for each group), which was the optimal number of clusters determined by the silhouette coefficient. The MVs of the gastrocnemius lateralis (GL), gastrocnemius medialis (GM), and soleus (SOL) in participants were measured using magnetic resonance imaging. In addition to absolute MVs, the relative MVs normalized to body mass were used for the analyses. The absolute and relative MVs of the total and individual plantar flexors were significantly greater in sprinters than in non-sprinters (all p < 0.01, d = 0.64–1.39). In contrast, all the plantar flexor MV variables did not differ significantly among the four groups of sprinters (all p > 0.05, η2 = 0.02–0.07). Furthermore, all plantar flexor MV variables did not correlate significantly with personal best 100 m sprint time in sprinters (r = −0.253–0.002, all p > 0.05). These findings suggest that although the plantar flexor muscles are specifically developed in sprinters compared to untrained non-sprinters, the greater plantar flexor MVs in the sprinters may not be important morphological factors for their sprint performance.

2021 ◽  
Vol 11 (1) ◽  
Laura Cristina Tibiletti Balieiro ◽  
Cristiana Araújo Gontijo ◽  
Luisa Pereira Marot ◽  
Gabriela Pereira Teixeira ◽  
Walid Makin Fahmy ◽  

AbstractA mismatch between circadian and social clocks leads to a circadian misalignment, which has been widely measured by social jetlag (SJL). There are several studies measuring SJL, but it has not been studied in pregnant women. Therefore, this study aimed to identify the occurrence of SJL throughout pregnancy and to verify whether there is an effect of pre-pregnancy body mass index (BMI) on SJL throughout pregnancy. The baseline of the present study was conducted with 205 1st trimester pregnant women of whom 100 were followed in their 2nd and 3rd trimester. SJL was calculated based on the absolute difference between mid-sleep time on workdays versus work-free days. The pre-pregnancy BMI and current BMI (kg/m2) were calculated. Linear regression and Generalised Estimating Equation (GEE) adjusted for confounders were used to determine the association between SJL and the gestational trimesters (time), and anthropometric variables. Most of the pregnant women (54.5%) presented SJL > 1 h in the first gestational trimester. We also found an isolated effect of the gestation trimester on the SJL mean. In this sense, pregnant women had a decrease in SJL from the second to the third trimester (1.33 ± 0.08 versus 1.12 ± 0.07, respectively; p = 0.012). GEE analyzes showed that pregnant women of a normal weight showed a decrease in SJL from the second to the third trimester (1.29 ± 0.11 and 0.93 ± 0.08, respectively, p = 0.032), but this was not found in the other groups of nutritional status (underweight, overweight and obesity). In addition, a positive association between SJL and pre-gestational BMI in the third trimester (β = 0.200, p = 0.046) was found. SJL is quite prevalent during the gestational period and excessive BMI both before and during pregnancy is associated with an increased risk of having SJL > 1 h in the third and second trimesters, respectively. In addition, pregnant women of normal weight—but not underweight or overweight—had decreased SJL from the second to the third trimester.

2021 ◽  
pp. 1-26
Christina Zorbas ◽  
Ruby Brooks ◽  
Rebecca Bennett ◽  
Amanda Lee ◽  
Josephine Marshall ◽  

Abstract Objective: To compare the cost and affordability of two fortnightly diets (representing the national guidelines and current consumption) across areas containing Australia’s major supermarkets. Design: The Healthy Diets Australian Standardised Affordability and Pricing protocol was used. Setting: Price data were collected online and via phone calls in 51 urban and inner regional locations across Australia. Participants: N/A. Results: Healthy diets were consistently less expensive than current (unhealthy) diets. Nonetheless, healthy diets would cost 25-26% of the disposable income for low-income households and 30-31% of the poverty line. Differences in gross incomes (the most available income metric which overrepresents disposable income) drove national variations in diet affordability (from 14% of the median gross household incomes in the Australian Capital Territory and Northern Territory, to 25% of the median gross household income in Tasmania). Conclusions: In Australian cities and regional areas with major supermarkets, access to affordable diets remain problematic for families receiving low incomes. These findings are likely to be exacerbated in outer regional and remote areas (not included in this study). To make healthy diets economically appealing, policies that reduce the (absolute and relative) costs of healthy diets and increase the incomes of Australians living in poverty are required.

Robotica ◽  
2021 ◽  
pp. 1-20
Ruiqing Luo ◽  
Wenbin Gao ◽  
Qi Huang ◽  
Yi Zhang

Summary The conventional product of exponentials $\left(\rm POE\right)$ -based methods dissatisfy the parametric minimality for the kinematic calibration of serial robots due to overlooking the magnitude and pitch constraints. Thus, the minimal kinematic model is presented to solve this problem, which can be developed further. This paper puts forward an improved algorithm for the minimal parameter calibration. An actual kinematic model with the minimal parameters $\left(\rm MP\right)$ is constructed according to the geometric properties of actual joint twists in the auxiliary frames established on the basis of the nominal joint axes. Then, the initial pose error is defined in the tool coordinate frame, which is expressed as the exponential map of the twist, and all twist descriptions are unified, so as to give a unified kinematic model in mathematics. By differentiating the kinematic model, a minimal error model is derived in explicit form. Subsequently, we propose a novel parameter identification method, which identifies the orientation error and position error parameters separately by the iterative least-squares method and updates the MP uniformly. Finally, the simulations and experiments on the different serial robots are conducted to verify the correctness and effectiveness of the proposed algorithm. The simulation results show our calibration algorithm outperforms the existing ones in the accuracy aspect, and the experiment result shows that the absolute pose accuracy of the UR5 industrial robot is upgraded about 9 times under a statistics sense after the calibration.

Maria Gemel B. Palconit ◽  
Ronnie S. Concepcion II ◽  
Jonnel D. Alejandrino ◽  
Michael E. Pareja ◽  
Vincent Jan D. Almero ◽  

Three-dimensional multiple fish tracking has gained significant research interest in quantifying fish behavior. However, most tracking techniques use a high frame rate, which is currently not viable for real-time tracking applications. This study discusses multiple fish-tracking techniques using low-frame-rate sampling of stereo video clips. The fish were tagged and tracked based on the absolute error of the predicted indices using past and present fish centroid locations and a deterministic frame index. In the predictor sub-system, linear regression and machine learning algorithms intended for nonlinear systems, such as the adaptive neuro-fuzzy inference system (ANFIS), symbolic regression, and Gaussian process regression (GPR), were investigated. The results showed that, in the context of tagging and tracking accuracy, the symbolic regression attained the best performance, followed by the GPR, that is, 74% to 100% and 81% to 91%, respectively. Considering the computation time, symbolic regression resulted in the highest computing lag of approximately 946 ms per iteration, whereas GPR achieved the lowest computing time of 39 ms.

2021 ◽  
Vol 8 ◽  
Shun Hu Zhang ◽  
Jia Lin Xin ◽  
Li Zhi Che

During the rolling process of thick plate, the nonlinear specific plastic power that derived from the non-linear Mises yield criterion is difficult to be integrated, which has restricted the establishment of a rolling force model. To solve this problem, a new yield criterion is firstly established, and then used to derive a linear specific plastic power. Meanwhile, a kinematically admissible velocity field whose horizontal velocity component obeys the Logistic function is proposed to describe the metal flow of the deformed plate. On these bases, the rolling energy items including the internal deformation power of the deformed body, friction power on the contact surface, and shear power on the entry and exit sections are integrated successively, and the rolling force model is established. It is proved that the model can predict the rolling force well when compared with the actual data of multicomponent alloys. Besides, the formula for predicting the outlet thickness is ultimately given upon this derived model, and a good agreement is also found between the predicted values and the actual ones, since the absolute errors between them are within 0.50 mm.

2021 ◽  
Xiping Wang ◽  
Rong Tang

Abstract The Global-Malmquist-Luenberger (GML) index was applied to analyse the carbon productivity in steel industry (SICP) of 29 provinces in China from 2006 to 2017, and then the SICP was decomposed into technical efficiency change index (TC) and technical progress index (EC). On this basis, the spatial effect is introduced into the traditional convergence model to investigate the spatial convergence of SICP. The empirical results show that: (1) The overall carbon productivity of China's steel industry is at a relatively low level, showing a slow growth trend. (2) The average value of the GML index of SICP is higher than 1, showing obvious inter-provincial and regional heterogeneity. Compared with EC, TC is the leading factor that promotes the increase of SICP. (3) The spatial absolute and condition β convergence of SICP exist in the whole country and the three major regions, but the σ convergence feature is not significant. The addition of spatial factors speeds up the convergence trend, and the speed of spatial absolute β convergence is about 3 times that of the classical convergence model. At the same time, the conditional convergence rate is significantly faster than the absolute convergence, which is closely related to the differences in influencing factors such as the industrial structure, economic development level, human capital, energy consumption intensity, and R&D investment among regions. There is still much room for improvement in carbon productivity in China's steel industry, and investment in scientific research must be increased in order to achieve the upgrading of the industrial structure and technological innovation. The existence of spatial convergence requires strengthening the joint reorganization of steel enterprises between provinces and regions, making full use of the spatial spillover effects of production technology, and realizing regional green and coordinated development.

2021 ◽  
Vol 15 (3) ◽  
pp. 8440-8449
Sarallah Abbasi ◽  
Maryam Alizadeh

This study investigated a three-dimensional flow analysis on a two-stage contra-rotating axial compressor using the Navier–Stokes, continuity, and energy equations with Ansys CFX commercial software. In order to validate the obtained results, the absolute and relative flow angles curves for each rotor in radial direction were extracted and compared with the other investigation results, indicating good agreement. The compressor efficiency curve also was extracted by varying the compressor pressure ratio and compressor efficiency against mass flow rate. The flow results revealed that further distortion of the flow structure in the second rotor imposed a greater increase in the amount of entropy, especially at near-stall conditions. The increase of entropy in the second rotor is due to the interference of the tip leakage flow with the main flow which consequently caused more drops in the second rotor, suggesting that more efficacy of flow control methods occurred in the second rotor than in the first rotor.

2021 ◽  
Aspen H Yoo ◽  
Alfredo Bolaños ◽  
Grace E Hallenbeck ◽  
Masih Rahmati ◽  
Thomas C Sprague ◽  

Humans allocate visual working memory (WM) resource according to behavioral relevance, resulting in more precise memories for more important items. Theoretically, items may be maintained by feature-tuned neural populations, where the relative gain of the populations encoding each item determines precision. To test this hypothesis, we compared the amplitudes of delay-period activity in the different parts of retinotopic maps representing each of several WM items, predicting amplitude would track with behavioral priority. Using fMRI, we scanned participants while they remembered the location of multiple items over a WM delay, then reported the location of one probed item using a memory-guided saccade. Importantly, items were not equally probable to be probed (0.6, 0.3, 0.1, 0.0), which was indicated with a pre-cue. We analyzed fMRI activity in ten visual field maps in occipital, parietal, and frontal cortex known to be important for visual WM. In early visual cortex, but not association cortex, the amplitude of BOLD activation within voxels corresponding to the retinotopic location of visual WM items increased with the priority of the item. Interestingly, these results were contrasted with a common finding that higher-level brain regions had greater delay-period activity, demonstrating a dissociation between the absolute amount of activity in a brain area, and the activity of different spatially-selective populations within it. These results suggest that the distribution of WM resources according to priority sculpts the relative gains of neural populations that encode items, offering a neural mechanism for how prioritization impacts memory precision.

2021 ◽  
Vol 14 (1) ◽  
Kerstin Heitkamp ◽  
Adriel Latorre-Pérez ◽  
Sven Nefigmann ◽  
Helena Gimeno-Valero ◽  
Cristina Vilanova ◽  

Abstract Background Recent research articles indicate that direct interspecies electron transfer (DIET) is an alternative metabolic route for methanogenic archaea that improves microbial methane productivity. It has been shown that multiple conductive materials such as biochar can be supplemented to anaerobic digesters to increase the rate of DIET. However, the industrial applicability, as well as the impact of such supplements on taxonomic profiles, has not been sufficiently assessed to date. Results Seven industrial biogas plants were upgraded with a shock charge of 1.8 kg biochar per ton of reactor content and then 1.8 kg per ton were added to the substrate for one year. A joint analysis for all seven systems showed a decreasing trend for the concentration of acetic acid (p < 0.0001), propionic acid (p < 0.0001) and butyric acid (p = 0.0022), which was significant in all cases. Quantification of the cofactor F420 using fluorescence microscopy showed a reduction in methanogenic archaea by up to a power of ten. Methanogenic archaea could grow within the biochar, even if the number of cells was 4 times less than in the surrounding sludge. 16S-rRNA gene amplicon sequencing showed a higher microbial diversity in the biochar particles than in the sludge, as well as an accumulation of secondary fermenters and halotolerant bacteria. Taxonomic profiles indicate microbial electroactivity, and show the frequent occurrence of Methanoculleus, which has not been described in this context before. Conclusions Our results shed light on the interplay between biochar particles and microbial communities in anaerobic digesters. Both the microbial diversity and the absolute frequency of the microorganisms involved were significantly changed between sludge samples and biochar particles. This is particularly important against the background of microbial process monitoring. In addition, it could be shown that biochar is suitable for reducing the content of inhibitory, volatile acids on an industrial scale.

Sign in / Sign up

Export Citation Format

Share Document