scholarly journals Applying Multivariate Discrete Distributions to Genetically Informative Count Data

2015 ◽  
Vol 46 (2) ◽  
pp. 252-268 ◽  
Author(s):  
Robert M. Kirkpatrick ◽  
Michael C. Neale
Econometrics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 9 ◽  
Author(s):  
Brendan P. M. McCabe ◽  
Christopher L. Skeels

The Poisson regression model remains an important tool in the econometric analysis of count data. In a pioneering contribution to the econometric analysis of such models, Lung-Fei Lee presented a specification test for a Poisson model against a broad class of discrete distributions sometimes called the Katz family. Two members of this alternative class are the binomial and negative binomial distributions, which are commonly used with count data to allow for under- and over-dispersion, respectively. In this paper we explore the structure of other distributions within the class and their suitability as alternatives to the Poisson model. Potential difficulties with the Katz likelihood leads us to investigate a class of point optimal tests of the Poisson assumption against the alternative of over-dispersion in both the regression and intercept only cases. In a simulation study, we compare score tests of ‘Poisson-ness’ with various point optimal tests, based on the Katz family, and conclude that it is possible to choose a point optimal test which is better in the intercept only case, although the nuisance parameters arising in the regression case are problematic. One possible cause is poor choice of the point at which to optimize. Consequently, we explore the use of Hellinger distance to aid this choice. Ultimately we conclude that score tests remain the most practical approach to testing for over-dispersion in this context.


2020 ◽  
Vol 43 (1) ◽  
pp. 21-48
Author(s):  
Josmar Mazucheli ◽  
Wesley Bertoli ◽  
Ricardo Puziol Oliveira

The methods to obtain discrete analogues of continuous distributions have been widely considered in recent years. In general, the discretization process provides probability mass functions that can be competitive with the traditional model used in the analysis of count data, the Poisson distribution. The discretization procedure also avoids the use of continuous distribution in the analysis of strictly discrete data. In this paper, we seek to introduce two discrete analogues for the Shanker distribution using the method of the infinite series and the method based on the survival function as alternatives to model overdispersed datasets. Despite the difference between discretization methods, the resulting distributions are interchangeable. However, the distribution generated by the method of infinite series method has simpler mathematical expressions for the shape, the generating functions and the central moments. The maximum likelihood theory is considered for estimation and asymptotic inference concerns. A simulation study is carried out in order to evaluate some frequentist properties of the developed methodology. The usefulness of the proposed models is evaluated using real datasets provided by the literature.


2009 ◽  
Vol 157 (2) ◽  
pp. 234-246 ◽  
Author(s):  
Ersoy Subasi ◽  
Munevver Mine Subasi ◽  
András Prékopa

2007 ◽  
Vol 37 (02) ◽  
pp. 475-515 ◽  
Author(s):  
Christian Genest ◽  
Johanna Nešlehová

The authors review various facts about copulas linking discrete distributions. They show how the possibility of ties that results from atoms in the probability distribution invalidates various familiar relations that lie at the root of copula theory in the continuous case. They highlight some of the dangers and limitations of an undiscriminating transposition of modeling and inference practices from the continuous setting into the discrete one.


2007 ◽  
Vol 37 (2) ◽  
pp. 475-515 ◽  
Author(s):  
Christian Genest ◽  
Johanna Nešlehová

The authors review various facts about copulas linking discrete distributions. They show how the possibility of ties that results from atoms in the probability distribution invalidates various familiar relations that lie at the root of copula theory in the continuous case. They highlight some of the dangers and limitations of an undiscriminating transposition of modeling and inference practices from the continuous setting into the discrete one.


Sign in / Sign up

Export Citation Format

Share Document