infinite series
Recently Published Documents


TOTAL DOCUMENTS

1340
(FIVE YEARS 169)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hülya Kodal Sevindir ◽  
Süleyman Çetinkaya ◽  
Ali Demir

The aim of this study is to analyze nonlinear Liouville-Caputo time-fractional problems by a new technique which is a combination of the iterative and ARA transform methods and is denoted by IAM. First, the ARA transform method and its inverse are utilized to get rid of time fractional derivative. Later, the iterative method is applied to establish the solution of the problem in infinite series form. The main advantages of this method are that it converges to analytic solution of the problem rapidly and implementation of method is easy. Finally, outcomes of the illustrative examples prove the efficiency and accuracy of the method.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binesh Thankappan

A stable and holomorphic implementation of complex functions in ℂ plane making use of a unit circle-based transform is presented in this paper. In this method, any complex number or function can be represented as an infinite series sum of progressive products of a base complex unit and its conjugate only, where both are defined inside the unit circle. With each term in the infinite progression lying inside the unit circle, the sum ultimately converges to the complex function under consideration. Since infinitely large number of terms are present in the progression, the first element of which may be deemed as the base unit of the given complex number, it is addressed as complex baselet so that the complex number or function is termed as the complex baselet transform. Using this approach, various fundamental operations applied on the original complex number in ℂ are mapped to equivalent operations on the complex baselet inside the unit circle, and results are presented. This implementation has unique properties due to the fact that the constituent elements are all lying inside the unit circle. Out of numerous applications, two cases are presented: one of a stable implementation of an otherwise unstable system and the second case of functions not satisfying Cauchy–Riemann equations thereby not holomorphic in ℂ plane, which are made complex differentiable using the proposed transform-based implementation. Various lemmas and theorems related to this approach are also included with proofs.


Author(s):  
Xiaomei Sun ◽  
Kaixiang Yu ◽  
Anqiang Zhu

In this paper, we establish an infinite series expansion of Leray–Trudinger inequality, which is closely related with Hardy inequality and Moser Trudinger inequality. Our result extends early results obtained by Mallick and Tintarev [A. Mallick and C. Tintarev. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20 (2018), 17501034. OP 21] to the case with many logs. It should be pointed out that our result is about series expansion of Hardy inequality under the case $p=n$ , which case is not considered by Gkikas and Psaradakis in [K. T. Gkikas and G. Psaradakis. Optimal non-homogeneous improvements for the series expansion of Hardy's inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310]. However, we can't obtain the optimal form by our method.


2021 ◽  
pp. 1-7
Author(s):  
Hans Musgrave ◽  
Ryan Zerr
Keyword(s):  

2021 ◽  
Vol 27 (4) ◽  
pp. 95-103
Author(s):  
Kunle Adegoke ◽  
◽  
Sourangshu Ghosh ◽  

We derive new infinite series involving Fibonacci numbers and Riemann zeta numbers. The calculations are facilitated by evaluating linear combinations of polygamma functions of the same order at certain arguments.


Sign in / Sign up

Export Citation Format

Share Document