A modfied mean curvature flow in Euclidean space and soap bubbles in symmetric spaces

2017 ◽  
Vol 195 (1) ◽  
pp. 1-17
Author(s):  
Naoyuki Koike
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Ruiwei Xu ◽  
Linfen Cao

Letf(x)be a smooth strictly convex solution ofdet(∂2f/∂xi∂xj)=exp(1/2)∑i=1nxi(∂f/∂xi)-fdefined on a domainΩ⊂Rn; then the graphM∇fof∇fis a space-like self-shrinker of mean curvature flow in Pseudo-Euclidean spaceRn2nwith the indefinite metric∑dxidyi. In this paper, we prove a Bernstein theorem for complete self-shrinkers. As a corollary, we obtain if the Lagrangian graphM∇fis complete inRn2nand passes through the origin then it is flat.


2017 ◽  
Vol 19 (06) ◽  
pp. 1750002 ◽  
Author(s):  
Debora Impera ◽  
Michele Rimoldi

In this paper, we obtain rigidity results and obstructions on the topology at infinity of translating solitons of the mean curvature flow in the Euclidean space. Our approach relies on the theory of [Formula: see text]-minimal hypersurfaces.


2017 ◽  
Vol 4 (1) ◽  
pp. 245-262
Author(s):  
Giuseppe Pipoli

AbstractIn this survey we discuss the evolution by inverse mean curvature flow of star-shaped mean convex hypersurfaces in non-compact rank one symmetric spaces. We show similarities and differences between the case considered, with particular attention to how the geometry of the ambient manifolds influences the behaviour of the evolution. Moreover we try, when possible, to give an unified approach to the results present in literature.


Sign in / Sign up

Export Citation Format

Share Document